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ABSTRACT

This work proposes a low-complexity blind adaptive reduced-rank
method (BARC) for symbol estimation using an adaptive decimation
and interpolation scheme based on diversity-combining and the con-
stant modulus criterion for interference suppression. The proposed
approach employs an iterative procedure to jointly optimize the in-
terpolation, decimation and estimation tasks for blind reduced-rank
parameter estimation. We describe joint iterative estimators based
on the constrained constant modulus (CCM) criterion, introduce al-
ternative decimation structures, including the optimal decimation
scheme, and develop low-complexity stochastic gradient adaptive al-
gorithms for the proposed structure. Simulations for a CDMA inter-
ference suppression application show an excellent performance and
substantial gains over prior art.

Index Terms— Blind adaptive estimation, reduced-rank tech-
niques, iterative methods.

1. INTRODUCTION

Blind estimation algorithms based on constrained optimization tech-
niques are important in several areas of signal processing and com-
munications such as beamforming and interference suppression [1].
The constrained optimization required in these applications usually
deals with linear constraints that correspond to prior knowledge of
certain parameters such as direction of arrival (DoA) of user signals
in antenna array processing [2] and the signature sequence of the
desired signal in CDMA interference suppression [3].

Reduced-rank estimation is a strategic technique in low-sample
support situations and large optimization problems that has gained
considerable attention in the last few years [4]-[8]. The origins of
reduced-rank parameter estimation lie in the problem of feature se-
lection encountered in statistical signal processing, which refers to
a process whereby a data space is transformed into a feature space,
that theoretically has the same dimension of the original data space.
It is, however, desirable to devise a transformation in such a way that
the data vector can be represented by a reduced number of effective
features and yet retain most of the intrinsic information content of
the input data [4]. In this context, there is relatively little work in
blind reduced-rank estimation.

Prior work on blind reduced-rank parameter estimation is lim-
ited and relies on the constrained minimum variance (CMV) de-
sign approach and is based on the multi-stage Wiener filter (MWF)
[6] and the auxiliary vector filtering (AVF) scheme [7, 8]. How-
ever, in the literature, the design of algorithms based on the constant
modulus criterion (CCM) [9, 10] has shown an increased robust-
ness against signature mismatch and improved performance over the
CMV approach. Recently, a reduced-rank version of the CCM based
on the MWF and the Krylov subspace was shown [11] to outperform
the previous blind methods and to achieve a performance close to the
supervised MWF and AVF techniques. A drawback of MWF- and
AVF-based schemes is their relatively high complexity.

In this work, we propose a low-complexity blind reduced-rank
symbol estimator (BARC) based on the CCM criterion and diversity-
combined interpolation and decimation. The proposed scheme is
simple, flexible, and provides a substantial performance advantage
over existing techniques. The BARC approach consists of an iter-
ative procedure where the interpolation, decimation and estimation
tasks are jointly optimized using the CCM design criterion. In the
BARC system, the number of elements for estimation is substan-
tially reduced, resulting in considerable computational savings and
very fast convergence performance for tracking dynamic signals. A
unique feature of the BARC method is that, unlike existing schemes,
it does not rely on the full-rank covariance matrix R (that may re-
quire a large amount of data to be estimated) before projecting the
received data onto a reduced-rank subspace. The BARC approach
skips the processing stage with R and directly obtains the subspace
of interest through a set of simple interpolation and decimation oper-
ations, which leads to faster convergence. In order to design the esti-
mators and the decimation unit of the proposed scheme, we describe
a joint iterative CCM design for both the interpolator and reduced-
rank estimators, propose alternative decimation structures and de-
velop low-complexity stochastic gradient (SG) algorithms.

This paper is organized as follows. The blind reduced-rank prob-
lem is formulated in Section 2. Section 3 is dedicated to the proposed
blind reduced-rank estimation (BARC) scheme and CCM reduced-
rank estimators. Section 4 is devoted to the blind adaptive SG algo-
rithms. Section 5 presents and discusses the simulation results and
Section 6 gives the concluding remarks.

2. BLIND REDUCED-RANK PROBLEM STATEMENT

Let us consider a blind estimation problem which corresponds to the

design of a parameter vector w[i] = [w
[i]
1 w

[i]
2 . . . w

[i]
M ]T according

to an appropriate cost function (eg. mean square error (MSE), MV

and CM) to process a received data vector r[i] = [r
[i]
0 . . . r

[i]
M−1]

T

and estimate a desired signal d[i] at time instant i. The symbols
(·)T and (·)H denote transpose and Hermitian transpose, respec-
tively. Since the literature of blind estimation algorithms for com-
munications indicates that the CCM criterion is superior to the CMV
approach, we focus here on the CCM criterion.

The set of parameters w[i] can be estimated via standard SG or
least-squares estimation techniques [1]. However, the laws that gov-
ern the convergence behavior of these estimators imply that the con-
vergence speed of these algorithms is proportional to M , the number
of elements in the estimator. Thus, a large M implies slow conver-
gence. A reduced-rank algorithm strives to circumvent this limita-
tion in terms of speed of convergence by reducing the number of
adaptive coefficients and extracting the most important features of
the processed data. This dimensionality reduction is accomplished
by projecting the received vectors onto a lower dimensional sub-
space. Consider an M × D projection matrix SD[i] which carries
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Fig. 1. Proposed blind adaptive reduced-rank estimation structure.

out a dimensionality reduction on the received data as given by

r̄[i] = SH
Dr[i] (1)

where, in what follows, all D-dimensional quantities are denoted
with a ”bar”. The resulting projected received vector r̄[i] is the in-
put to a tapped-delay line represented by the D × 1 vector w̄[i] =

[w̄
[i]
1 w̄

[i]
2 . . . w̄

[i]
D ]T for time interval i. The estimator output corre-

sponding to the ith time instant is

z[i] = w̄H
k [i]SH

D [i]r[i] = w̄H [i]r̄[i] (2)

If we consider the constant modulus (CM) cost function

JCM (w̄k[i]) = E
ˆ
(
˛̨
w̄H

k [i]SH
D [i]r[i]

˛̨2 − 1)2
˜

(3)

subject to the constraint w̄H
k [i]SH

D [i]p[i] = ν, where E[·] stands for
expectation, ν is a convexity enforcing parameter [10] and p[i] is
a quantity that corresponds to the effective signature of the desired
user in a CDMA system or to the array response of the signal of
interest in beamforming. The expression that solves (3) is given by

w̄[i + 1] = R̄−1
z [i]

ˆ
d̄z[i] − (p̄H [i]R̄−1

z [i]p̄[i])−1

· p̄[i]
`
p̄H [i]R̄−1

z [i]d̄z[i] − ν
´˜ (4)

where R̄z[i] = E[|z[i]|2r̄[i]r̄H [i]] = SH
D [i]Rz[i]SD[i] , Rz[i] =

E[|z[i]|2r[i]rH [i]] , d̄z[i] = E[z∗[i]r̄[i]] = SH
D [i]E[z∗[i]r[i]] and,

p̄ = SH
D [i]p. The basic problem of the design in (4) is how to effi-

ciently (or optimally) design the M × D matrix SD[i] that projects
the observed data vector r[i] with dimensions M×1 onto a reduced-
rank data vector r̄(i) with dimensions D × 1. In the next section we
present the proposed blind reduced-rank approach.

3. PROPOSED BLIND REDUCED-RANK SCHEME

The framework of the proposed BARC scheme is detailed in this
section. Fig. 1 shows the structure of the system, where an in-
terpolator, a decimator unit with several decimation branches and
a reduced-rank estimator which are time-varying are employed. The
M ×1 received vector r[i] is filtered by the interpolator filter v[i] =

[v
[i]
0 . . . v

[i]
NI−1]

T , yielding the interpolated received vector rI[i]. The

M × 1 vector rI[i] is then decimated by B decimation patterns in
parallel, leading to B different D × 1 vectors r̄b[i], where L is the
decimation factor and D = M/L is the rank. The proposed ar-
chitecture, that employs several decimation branches in parallel to
improve symbol estimation, is inspired by the use of receive di-
versity to improve the reliability of wireless communications links
[12]. The proposed decimation procedure corresponds to discarding
M − D samples of rI[i] of each set of M received samples with
different patterns, resulting in B different D × 1 decimated vectors

r̄b[i]. Then, we compute the inner product of r̄b[i] with the D × 1
vector of the reduced-rank filter coefficients w̄[i] that minimizes the
squared norm of the error signal.

3.1. Adaptive Interpolation, Decimation and Estimation Scheme
The front-end adaptive filtering is carried out by the interpolator fil-
ter v[i] on the received vector r[i] and yields the interpolated re-
ceived vector rI[i] = VH [i]r[i], where the M × M convolution
matrix VH [i] with the coefficients of the interpolator is given by

VH [i] =

2
66664

v
∗[i]
0 . . . v

∗[i]
NI−1 . . . 0 0 0

0 v
∗[i]
0 . . . v

∗[i]
NI−1 . . . 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 . . . v
∗[i]
0

3
77775

.

(5)
Let us express the M × 1 vector rI[i] in an equivalent way which

will be useful when dealing with the different decimation patterns:

rI[i] = VH [i]r[i] = �o[i]v
∗[i], (6)

where the M ×NI matrix with the received samples of r[i] and that
implements convolution is described by

�o[i] =

2
664

r
[i]
0 r

[i]
1 . . . r

[i]
NI−1

...
...

. . .
...

r
[i]
M−1 r

[i]
M . . . r

[i]
M+NI−2

3
775 . (7)

The D × 1 decimated interpolated received vector for branch b is

r̄b[i] = Db[i]rI[i], (8)

where the D×M decimation matrix Db[i] that adaptively minimizes
the squared norm of the error at time instant i. The matrix Db[i] is
mathematically equivalent to signal decimation with a chosen pat-
tern on the M × 1 vector rI[i], which corresponds to the removal of
M − D samples of rI[i] of each set of M observed samples.

In order to express the proposed reduced-rank estimator output,
we resort to a strategy, which will allows us to devise solutions for
both interpolator and receiver. Specifically, we express the estimated
symbol z[i] as a function of w̄[i] and v[i]:

z[i] = w̄H [i]SH
D [i]r[i] = w̄H [i]

`
Db[i]V

H [i]r[i]
´

= w̄H [i]
`
Db[i]�o[i]

´
v∗[i] = w̄H [i]�b[i]v

∗[i]

= vH [i]
`�T

b [i]w̄∗[i]
´

= vH [i]u[i],

(9)

where u[i] = �T
b [i]w̄∗[i] is an NI × 1 vector, the D coefficients

of w̄[i] and the NI elements of v[i] are assumed complex and the
D × NI matrix �b[i] is �b[i] = Db[i]�o[i].

3.2. Reduced-Rank Joint Iterative CCM Estimators Design
Let us describe the CCM estimators design of the proposed reduced-
rank structure. The CCM expressions for w̄[i] and v[i] can be com-
puted through the minimization of

JCM(v[i], w̄[i]) = E
h`|w̄H [i]�[i]v∗[i]|2 − 1

´i
, (10)

subject to w̄H
k [i]SH

D [i]p[i] = ν. By using the method of Lagrange
multipliers, fixing w̄[i] and minimizing the Lagrangian with respect
to v[i], the expression for the interpolator becomes

v[i + 1] = R̄−1
u [i]

ˆ
d̄u[i] − (p̄H

w [i]R̄−1
u [i]p̄w[i])−1

· p̄w[i]
`
p̄H

w [i]R̄−1
u [i]d̄u[i] − ν

´˜ (11)
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where R̄u[i] = E[|z[i]|2u[i]uH [i]], d̄u[i] = E[z∗[i]u[i]], u[i] =
�T [i]w̄∗[i] and p̄w = P T

o [i]w̄[i]. The D × NI matrix P o[i] is a
function of Db[i] and p[i] taken from the constraint and the equiv-
alence w̄H

k [i]SH
D [i]p[i] = w̄H

k [i]P T
o [i]v∗[i] = vH

k [i]pw[i] = ν.
By fixing the interpolator v[i] and minimizing the Lagrangian with
respect to w̄[i] the expression for the reduced-rank estimator is

w̄[i + 1] = R̄−1
z [i]

ˆ
d̄z[i] − (p̄H [i]R̄−1

z [i]p̄[i])−1

· p̄[i]
`
p̄H [i]R̄−1

z [i]d̄z[i] − ν
´˜ (12)

where R̄z[i] = E[|z[i]|2r̄[i]r̄H [i]] = SH
D [i]Rz[i]SD[i] , Rz[i] =

E[|z[i]|2r[i]rH [i]] , d̄z[i] = E[z∗[i]r̄[i]] = SH
D [i]E[z∗[i]r[i], p̄ =

SH
D [i]p and SD[i] = Db[i]V

H [i]. We remark that (11) and (12)
are not closed-form solutions for w̄[i] and v[i] since they depend on
each other and their previous values. Thus it is necessary to iterate
(11) and (12) with an initial value to obtain a solution.

3.3. Adaptive Decimation Schemes
We present an optimal approach and three sub-optimal procedures
for designing the decimation unit of the novel reduced-rank scheme,
where the common framework is the use of parallel branches with
decimation patterns that yield B decimated vectors r̄b[i] as candi-
dates. Mathematically, the scheme chooses the decimation pattern
Db and consequently the decimated interpolated observation vector
r̄b[i] that minimizes |eb[i]|2, where eb[i] = |w̄H [i]r̄b[i]|2 − 1 is the
error signal at branch b. Once the decimation pattern is selected for
the time instant i, the decimated interpolated vector is computed as
r̄[i] = D[i]rI[i]. The decimation pattern D[i] is selected on the
basis of the following criterion:

D[i] = Db[i] when b = arg min
1≤b≤B

|eb[i]|2, (13)

where the optimal decimation pattern Dopt for the BARC scheme
with decimation factor L is derived through the counting principle.
We consider a procedure that has M samples as possible candidates
for the first row of Dopt and M − m + 1 samples as candidates for
the following D− 1 rows of Dopt, where m denotes the mth row of
the matrix Dopt, resulting in a number of candidates equal to

B = M · (M − 1) . . . (M − D + 1)| {z }
D terms

=
M !

(M − D)!
. (14)

The optimal decimation scheme described in (13)-(14) is, however,
very complex for practical use as it requires D permutations of M
samples for each symbol interval and carries out an extensive search
over all possible patterns. Thus, a decimation scheme that renders
itself to practical and low-complexity implementations is of great
interest. In order to consider a general framework for sub-optimal
decimation schemes with decimation factor L and a finite number of
B parallel branches, let us describe the following structure:

Db[i] =

2
66666666666664

0 . . . 0| {z }
r1 zeros

1 0 0 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0| {z }
rm zeros

1 0 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . 0| {z }
rD zeros

1 0 . . . 0| {z }
(M−rD−1) zeros

3
77777777777775

,

(15)
where m (m = 1, 2, . . . , M/L) denotes the m-th row and rm is the
number of zeros chosen according to the following proposed alter-
native decimation patterns:

A. Uniform (U) Decimation with B = 1. We make rm = (m −
1)L and this corresponds to the use of a single branch on the
decimation unit.

B. Pre-Stored (PS) Decimation. We select rm = (m−1)L+(b−1)
which corresponds to the utilization of uniform decimation
for each branch b out of B branches and the different patterns
are obtained by selecting adjacent samples with respect to the
previous and succeeding decimation patterns.

C. Random (R) Decimation. We choose rm as a discrete uniform
random variable, which is independent for each row m out of
B branches and whose values range between 0 and M − 1.

4. BLIND ADAPTIVE ESTIMATION ALGORITHMS
In this section we present SG algorithms [1] to estimate the param-
eters of the filter w̄[i], the decimation unit D[i] and the interpolator
v[i]. Consider the adaptive processing shown in Fig. 1. To design
the estimators v[i] and w̄[i], we consider the Lagrangian

LCM(v[i], w̄[i]) = E
h`|w̄H [i]�[i]v∗[i]|2 − 1

´i

−�
h`

w̄H
k [i]SH

D [i]p[i] − ν
´
λ
i
,

(16)

where λ is a Lagrange multiplier. By minimizing (16) and using the
constraint vH

k [i]pw[i] = ν, we get the update recursion

v[i+1] = v[i]−μve[i]z∗[i]
`
I− (pH

w [i]pw[i])−1pw[i]pH
w [i]

´
u[i],
(17)

where μv is the step size. We subsequently form VH [i] as in (5),
compute rI[i] and compute the decimated interpolated vectors rb[i]
for the B branches with the aid of the decimation patterns Db[i],
where 1 ≤ b ≤ B. Once the B candidate vectors r̄b[i] are computed,
we select the vector r̄b[i] that minimizes the squared norm of

eb[i] = |w̄H [i]r̄b[i]|2 − 1. (18)

Based on the selection of Db[i] that minimizes |eb[i]|2, we choose
the corresponding reduced-rank vector r̄[i] and select the error of
the proposed SG algorithm e[i] as the error eb[i] with the smallest
squared magnitude of the B branches

r[i] = rb[i] and e[i] = eb[i] when b = arg min
1≤b≤B

|eb[i]|2. (19)

At last, by minimizing (16) and using the constraint w̄H
k [i]SH

D [i]p[i] =
ν, we obtain the update recursion for w̄[i]

w̄[i+1] = w̄[i]−μwe[i]z∗[i]
`
I−SH

D [i]p[i]pH [i]SH
D [i]

´
r̄[i], (20)

where μw is the step size. The SG algorithms for the proposed struc-
ture presented here have a computational complexity O(D+NI). In
fact, the proposed structure trades off one SG algorithm with com-
plexity O(M) against two LMS algorithms with complexity O(D)
and O(NI), operating simultaneously and exchanging information.

5. SIMULATIONS

In this section we assess the BARC scheme and algorithms in a
CDMA interference suppression application. We consider the uplink
of a symbol synchronous QPSK DS-CDMA system with K users, N
chips per symbol and L propagation paths. Assuming that the chan-
nel is constant during each symbol interval and the random spread-
ing codes are repeated from symbol to symbol, the received signal
after filtering by a chip-pulse matched filter and sampled at chip rate
yields the M -dimensional received vector

r[i] =
KX

k=1

Hk[i]AkCkdk[i] + n[i], (21)
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where M = N + L − 1, n[i] = [n1[i] . . . nM [i]]T is the complex
Gaussian noise vector with zero mean and E[n[i]nH(i)] = σ2I, the
symbol vector is dk[i] = [dk[i + Ls − 1] . . . dk[i] . . . dk[i −
Ls + 1]]T , the amplitude of user k is Ak, Ls is the intersymbol in-
terference span and the ((2Ls − 1) ·N)× (2Ls − 1) block diagonal
matrix Ck is formed with N -chips shifted versions of the signature
sk = [sk(1) . . . sk(N)]T of user k. The M ×(2 ·Ls−1) ·N convo-
lution matrix Hk(i) is constructed with shifted versions of the L×1
channel vector hk(i) = [hk,0(i) . . . hk,Lp−1(i)]

T on each column
and zeros elsewhere, which are generated with Clarke’s model [12].
All simulations assume L = 9 as an upper bound, 3-path channels
with relative powers given by 0, −3 and −6 dB, where in each run
the spacing between paths is obtained from a discrete uniform ran-
dom variable between 1 and 2 chips and average the curves over 200
runs. The system has a power distribution among the users for each
run that follows a log-normal distribution with standard deviation
equal to 1.5 dB. All adaptive algorithms employ the CCM criterion,
linear receivers and SG estimators and we measure the BER of user
1. We compare the BARC scheme with the full-rank [9], reduced-
rank schemes with the MWF method [11] and the SVD-based ap-
proach that selects the D largest eigenvectors [5] to compute the
projection matrix SD[i] and the MMSE, which assumes the knowl-
edge of the channels and the noise variance. All algorithms have
their step size and rank D optimized with respect to the BER for
each scenario and employ the blind channel estimator of [9] to com-
pute the effective signature p[i].

0 500 1000 1500 2000
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R
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BARC−OPT−DEC (D=4)
MMSE

Fig. 2. BER performance versus number of decimation branches.

In order to assess the proposed decimation methods, we com-
pute the BER performance of the algorithms for the uniform (U-
DEC), the random (R-DEC), the pre-stored (PS-DEC) and the op-
timal (OPT-DEC) schemes. The results, shown in Fig.2, indicate
that the BARC scheme with the optimal decimation (OPT-DEC)
achieves the best performance, followed by the proposed method
with pre-stored decimation (PS-DEC), the random decimation sys-
tem (R-DEC), the uniform decimation (U-DEC), the MWF, the SVD
and the full-rank approach. Due to its exponential complexity, the
optimal decimation algorithm is not practical and the PS-DEC is the
one with the best trade-off between performance and complexity.

In the next experiment, we evaluate the effect of the number
of decimation branches B on the performance for various ranks D
with a data support of 1500 symbols and the PS-DEC decimation
approach. The results, depicted in Fig.3, indicate that the perfor-
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BARC(D=3)
SVD−based
MWF
MMSE

Fig. 3. BER performance versus number of decimation branches.

mance of the BARC scheme is improved and approaches the opti-
mal MMSE estimator, which assumes that the channels and the noise
variance are known, as B is increased.

6. CONCLUSIONS

We propose a low-complexity reduced-rank method for blind pa-
rameter estimation with an adaptive decimation and interpolation
scheme based on diversity-combining. The proposed approach is
applied to CDMA interference suppression, outperforms the best
known methods and approaches the optimal MMSE estimator.
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