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ABSTRACT

A novel blind subspace-based channel estimation technique
is developed for direct-sequence code division multiple-access
(DS-CDMA) systems operating in unknown wide-sense sta-
tionary noise environments. Unlike the existing blind algo-
rithms designed for unknown noise environments, the pro-
posed technique is applicable to any symbol constellation and
does not require any auxiliary antennas at the receiver side.
The proposed technique is based on the generalized correla-
tion decomposition (GCD) that is used to obtain more accu-
rate estimates of the noise subspace and the user-of-interest
channel vector. Simulation results show that when the opti-
mal GCD weighting matrices are used, the estimation perfor-
mance is substantially improved as compared to the conven-
tional singular value decomposition (SVD)-based blind chan-
nel estimation techniques.

Index Terms— Blind channel estimation, canonical cor-
relation decomposition, DS-CDMA, generalized correlation
decomposition.

1. INTRODUCTION

Conventional blind subspace-based channel estimation tech-
niques are based on the assumption that the noise is white,
and, as a result, the signal and noise subspaces can be iden-
tified from the eigendecomposition of the data covariance
matrix [1], [2]. However, this assumption can be easily vio-
lated in practice [3]-[5] and, therefore, some other approaches
should be exploited to identify the signal and noise subspaces.
In [3], a blind subspace-based channel estimation technique
has been developed for unknown correlated noise environ-
ments. This technique uses quite a common assumption that
the noise is wide-sense stationary [4]-[6], while, unlike other
estimation techniques proposed in this context [4]-[5], it is
applicable to the case of an arbitrary signal constellation and
does not require any auxiliary receive antenna or any knowl-
edge of the spreading sequence of any user other than that of
the user-of-interest.

The method proposed in [3] uses the centro-Hermitian
property [6] of the noise covariance matrix to form a low-
rank matrix that depends only on the second-order statistics
of the received signals while is independent from the corre-
lated noise. Then, the signal and noise subspaces are iden-
tified using the SVD of the so-obtained low-rank matrix. In
practice, the exact data covariance matrix is not available at

the receiver, but it can be estimated from the data samples.
This may result in substantial errors in the noise subspace
estimate and in the subsequent channel estimate.

In this paper, a technique based on GCD [7] is devel-
oped to accurately estimate the noise subspace from given
data samples. It is shown that the user channel can be more
precisely estimated if, instead of the conventional SVD-based
noise subspace estimate of [3], the aforementioned GCD-bas-
ed estimate is used. The GCD technique uses two weight-
ing matrices that can be properly adjusted to improve the
noise subspace estimation performance. We obtain the opti-
mal GCD weighting matrices for which the mean-square error
(MSE) of the orthogonal projection of any arbitrary vector in
the actual signal subspace onto the estimated noise subspace
is minimized in the high SNR regime. It is shown that if
such optimal weighting matrices are used, the corresponding
GCD can be viewed as an extension of the classical canonical
correlation decomposition (CCD) [8].

The rest of the paper is organized as follows. The signal
model and a brief overview on the background of the problem
are given in Section 2. The proposed algorithm is presented
in Section 3 and its performance is analyzed in Section 4.
Simulation results are presented in Section 5 and concluding
remarks are drawn in Section 6.

2. BACKGROUND

The received baseband signal of the synchronous DS-CDMA
system can be represented as x(t) =

∑∞
m=−∞

∑K
k=1

Akbk(m)wk(t−mTs) + v(t) [3], [5] where K is the number of
users, Ts is the symbol duration, v(t) is the unknown corre-
lated noise that is assumed to be wide-sense stationary [3]-[6],
and bk(m), Ak, and wk(t) denote the mth i.i.d. zero-mean
unit-variance data symbol, the signal amplitude, and the sig-
nature waveform of the kth user, respectively.

Let ck �
[
ck[0], ck[1], . . . , ck[Lc − 1]

]T
be the spreading

sequence of the kth user where Lc is the spreading factor
and (·)T stands for the transpose. The signature waveform

of this user can be written as wk(t) =
∑Lc−1

l=0 ck[l]hk

(
t −

lTc

)
where hk(t) is the unknown multipath channel impulse

response of the kth user that is assumed to be fixed dur-
ing the observation period [3]-[5], and Tc = Ts/Lc is the
chip period. Assume that hk(t) is nonzero in [0, αkTc] where
L − 1 ≤ max{α1, . . . , αK} < L and L is a positive integer.
We consider the case L � Lc, so that the effect of inter-
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symbol-interference (ISI) is negligible [3]-[5]. Sampling the
received signal in the nth transmitted user symbols inter-
val, the ISI-free part of the sampled data vector is given by
x(n) =

∑K
k=1 Akbk(n)wk+v(n) [3]-[5] where x(n) = [x(nTs+

(L− 1)Tc), x(nTs + LTc), . . . , x(nTs + (Lc − 1)Tc)]
T , v(n) =

[v(nTs+(L−1)Tc), v(nTs+LTc), . . . , v((nTs+Lc−1)Tc), and
wk = [wk((L − 1)Tc), wk(LTc), · · · , wk((Lc − 1)Tc)]

T . Note
that the signature vector wk is given by [3]-[5]

wk =

⎡
⎢⎢⎢⎣

ck[L− 1] . . . ck[0]
ck[L] . . . ck[1]

...
. . .

...
ck[Lc − 1] . . . ck[Lc − L]

⎤
⎥⎥⎥⎦hk � Ckhk (1)

where hk � [hk(0), hk(Tc), . . . , hk((L − 1)Tc)]
T . We assume

without any loss of generality that hk is a unit-norm vector
and the normalization factor of the channel vector is absorbed
in Ak [3]-[5]. Denoting W � [A1w1, A2w2, . . . , AKwK ], we
can rewrite the sampled data vector model as

x(n) = Wb(n) + v(n) (2)

where b(n) � [b1(n), b2(n), . . . , bK(n)]T . From (2), we have

R � E{x(n)x(n)H} = WWH+Σ where Σ � E{v(n)v(n)H},
E{·} is the statistical expectation, and (·)H stands for the
Hermitian transpose. As v(n) is wide-sense stationary, the
noise covariance matrix Σ is centro-Hermitian [3], [6], that
is, JΣ∗J = Σ where (·)∗ denotes the complex conjugate and
J is the exchange matrix with ones on its antidiagonal and
zeros elsewhere.

It is well known that, as the data covariance matrix R de-
pends on the unknown noise covariance matrix Σ, the signal
and noise subspaces cannot be obtained from the eigende-
composition of R. To get around this problem, it has been
proposed in [3] (see also [6]) to identify the signal and noise
subspaces from the SVD of the so-called covariance difference
matrix

Rd � R− JR∗J = WWH − JW∗WT J. (3)

rom equation (3), it can be observed that Rd depends only
on the user signatures and is independent from the unknown
noise covariance matrix Σ. Therefore, the signal and noise
subspaces can be directly obtained from the SVD of Rd. It
has been shown in [3] that under certain mild identifiability
conditions, the orthogonality of the so-obtained noise sub-
space onto wk = Ckhk can be used to uniquely identify user
channel vectors.

In practice, R is not known exactly and is usually es-
timated from a finite number of data samples. This may
induce substantial errors in the noise subspace estimate, and,
consequently, cause a significant discrepancy between the es-
timated channel vector and its actual value.

3. THE PROPOSED TECHNIQUE

Consider two arbitrary positive-definite matrices Π1 and Π2

and form

Π
− 1

2
1 RdΠ

− 1
2

2 =Π
− 1

2
1 [W JW∗]

[
IK 0
0 −IK

]
[W JW∗]HΠ

− 1
2

2

(4)

where Π
1/2
1 and Π

1/2
2 are the unique Hermitian square roots

of Π1 and Π2, respectively. As [W JW∗] is an (Lc − L +
1) × 2K matrix, we assume that Lc > 2K + L − 1 so that

Π
−1/2
1 RdΠ

−1/2
2 becomes rank-deficient.1 The GCD of Rd is

defined as the SVD of Π
−1/2
1 RdΠ

−1/2
2 [7], that is,

Π
− 1

2
1 RdΠ

− 1
2

2 =U1ΛUH
2 =[Us1 Un1]

[
Λs 0
0 0

]
[Us2 Un2]

H

(5)
where Λs is the 2K × 2K diagonal matrix whose diagonal

elements are the non-zero singular values of Π
−1/2
1 RdΠ

−1/2
2

and Us1 and Us2 consist of the left and right singular vectors
associated those singular values, respectively. From (4) and
(5), we have that

span
(
Π
− 1

2
1 [W JW∗]

)
= span(Us1) = span(Un1) (6)

where span(·) and span(·) stand for the column span of a ma-
trix and its orthogonal complement, respectively. Denoting

Li = [Lsi Lni] � Π
− 1

2
i [Usi Uni] = Π

− 1
2

i Ui for i = 1, 2, it
can be directly obtained from (6) that [7]

span ([W JW∗]) = span(Ln1). (7)

Assuming without any loss of generality that the first user
is the user-of-interest, from (7) it follows that LH

n1w1 = 0.
Using the latter equation along with the fact that w1 = C1h1,
we have that h1 is a solution to

Th = 0 (8)

where T � LH
n1C1. Using the similar argument as in [3], it

can be readily shown that up to a scaling factor, h1 is the
unique solution to (8) if and only if C1 is a full column-rank
matrix and dim {span(C1) ∩ span ([W JW∗])} = 1.

Note that if R is exactly known and the identifiability
conditions hold, the choice of Π1 and Π2 becomes immate-
rial as h1 can be uniquely identified from (8) for any arbitrary
positive-definite matrices Π1 and Π2. However, R is usually
estimated as R̂ = 1

N

∑N
n=1 x(n)xH(n). In such a case, the

choice of Π1 and Π2 has a significant effect on the accuracy
of the resulting noise subspace estimate and, correspondingly,
to the channel vector estimate. It will be shown in Section 4
that an accurate noise subspace estimate can be obtained if
Π1 and Π2 are judiciously chosen based on the second-order
statistics of the received data. This means that in practice,
such proper values of Π1 and Π2 should be estimated from
the received data samples. In such cases, the proposed chan-
nel estimation algorithm can be summarized as the following
number od steps:

1. Compute R̂d = R̂− JR̂∗J.

2. Choose suitable weighting matrices Π1 and Π2 and
obtain their sample estimates2 Π̂1 and Π̂2.

3. Use SVD of Π̂
−1/2
1 R̂dΠ̂

−1/2
2 to obtain

Π̂
− 1

2
1 R̂dΠ̂

− 1
2

2 =
[
Ûs1 Ûn1

][
Λ̂s 0

0 Λ̂n

][
Ûs2 Ûn2

]H

(9)

where (9) is the finite-sample counterpart of (5).

1If Lc > 2K + L − 1 does not hold, we can use temporal over-
sampling to increase the dimension of the observation space so that
Rd becomes low-rank [3].

2A proper approach to select the weighting matrices and obtain
their sample estimates is discussed in Section 4.
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4. Compute L̂n1 = Π̂
−1/2
1 Ûn1 and T̂ = L̂H

n1C1. Then,
obtain the least-square (LS) estimate of the channel h1

as ĥ1 = �{T̂HT̂} where �{·} denotes the eigenvector
associated with the smallest eigenvalue of a matrix.

Note that if Π1 = Π2 = I, then the above algorithm re-
duces to the algorithm proposed in [3]. However, as shown in
Section 4, the estimation performance of [3] can be substan-
tially improved if Π1 and Π2 are properly selected based on
the received data.

4. PERFORMANCE ANALYSIS

The channel estimation error in the proposed technique is
caused by the fact that L̂n1 does not inherit the orthogo-
nality property of Ln1 to span ([W JW∗]), and, therefore,
any non-zero vector w in the signal subspace may have a non-
zero orthogonal projection onto the estimated noise subspace.
Therefore, to improve the channel estimation performance, it
is reasonable to find Π1 and Π2 for which the MSE of the
orthogonal projection of any arbitrary w ∈ span ([W JW∗])
onto the estimated noise subspace is minimized. We refer to
such a subspace as the optimal GCD-based noise subspace es-
timate as, among all GCD-based noise subspace estimates, it
preserves the orthogonality property to the signal subspace in
the best way. The matrices Π1 and Π2 that result in such an
optimal GCD-based noise subspace estimate are also denoted
as Π̃1 and Π̃2, respectively.

Let Pn1 � Ln1

(
LH

n1Ln1

)−1
LH

n1 be the orthogonal pro-
jection matrix onto the noise subspace. As Pn1w = 0 for
any w ∈ span ([W JW∗]), our objective is to find the opti-

mal matrices Π̃1 and Π̃2 that minimize eo � E{‖P̂n1w‖2}
where P̂n1 � L̂n1(L̂

H
n1L̂n1)

−1L̂H
n1 is the sample estimate of

Pn1. In the sequel, the first-order perturbation analysis is
used to obtain approximate expressions for ‖P̂n1w‖2 and eo.
As the derived expression for eo appears to depend on up to
the fourth-order unknown noise statistics, we limit our anal-
ysis to the high SNR scenario to make the problem tractable.
Then, we determine the matrices Π̃1 and Π̃2 that result into
the minimal value of eo in such a scenario. Proof of the fol-
lowing theorem is given in [9].

Theorem 1: The first-order perturbation analysis based
approximation of ‖P̂n1w‖2 is given by

‖P̂n1w‖2 = wHLs1Λ
−1
s LH

s2ΔRdPn1ΔRdLs2Λ
−1
s LH

s1w
(10)

where ΔRd � Rd− R̂d. Applying the statistical expectation
to both sides of (10), we have

eo =
1

N
zH(

tr (ΣPn1) (WWH +JW∗WT J)+ΘPn1

)
z (11)

where tr(·) stands for the trace of a matrix, z � Ls2Λ
−1
s LH

s1w,

and ΘPn1 � E
{
(vvH − Jv∗vT J)Pn1(vvH − Jv∗vT J)

}
. In

the high SNR regime, the optimal matrices Π̃1 and Π̃2 that
minimize (11) are given by

Π̃1 = Π̃2 = R + JR∗J. (12)

The following remarks are in order.
Remark 1: In practice, Π̃1 and Π̃2 are unknown and have

to be estimated using

ˆ̃Π1 = ˆ̃Π2 = R̂ + JR̂∗J (13)

Note from (10) that ‖P̂n1w‖2 is only a function of ΔRd and is

independent from the estimation errors in Π̂1 and Π̂2. From
the latter fact it can be inferred that the distortion of the
resulting noise subspace estimate caused by the use of the
estimated weighting matrices instead of the true ones is neg-
ligible as compared to the distortion induced by the use of
R̂d in lieu of Rd.

Remark 2: If Π̃1 and Π̃2 are used as the weighting ma-
trices, then the GCD in (5) is transformed to an extended
form of CCD. To show this, let us introduce X1 = [x Jx∗]
and X2 = [x −Jx∗] where, for the sake of notational brevity,
the time index n has been omitted from x(n). Then, it can

be observed that Rd = R − JR∗J = E
{
X1X

H
2

}
, Π̃1 =

R+JR∗J = E
{
X1X

H
1

}
and Π̃2 = R+JR∗J = E

{
X2X

H
2

}
.

Therefore, when Π̃1 and Π̃2 are used, the GCD in (5) is
in fact the CCD of Rd = E

{
X1X

H
2

}
. Hence, Theorem 1

proves that the optimal GCD-based noise subspace estimate
in the high SNR regime is obtained through the CCD of
Rd = E

{
X1X

H
2

}
, or, equivalently, the SVD of

R = E{X1X
H
1 }−

1
2 E{X1X

H
2 }E{X2X

H
2 }−

1
2 . (14)

Note that the above definition of CCD can be considered as
an extension to its conventional definition [8] as the matrix
R in (14) is formed based on two random matrices X1 and
X2 rather than two random vectors.

A related optimality property of conventional CCD has
been earlier explored in [7] in the direction-of-arrival esti-
mation context. However, apart from extended definition of
CCD used in our technique, there is a fundamental difference
between our algorithm and that of [7]: The algorithm pro-
posed in [7] is based on CCD of the cross-correlation matrix
of two data vectors received at a pair of well-separated an-
tennas. In contrast to [7], our technique uses the data vector
x received at a single antenna to build up two virtual data
matrices X1 and X2. Then, the extended CCD technique is
applied to the cross-correlation of X1 and X2 to obtain the
optimal GCD-based noise subspace estimate.

Without any performance analysis or any proof of the op-
timality of CCD, some other applications of the conventional
CCD principle can be found in [4], [5]. Interestingly, in con-
trast to (12), the choice of the GCD weighting matrices in
the approaches of [4], [5] and [7] appears to be equal to the
data covariance matrix at the receive antenna(s).

5. SIMULATIONS

In our simulation examples, K = 7, Lc = 40, and L = 5
are chosen. The user symbols are drawn from the QPSK
constellation and the entries of the channel vector associated
with each user are randomly drawn from a zero-mean com-
plex Gaussian process. The results are averaged over 1000
independent simulation runs.

Fig. 1 shows the MSE curves of the channel vector es-
timate versus N for SNR = 10 dB. In Fig. 1, the noise is
modelled as an unknown Gaussian random process [3] whose

(l, k)-th covariance matrix entry is equal to [Σ]lk = 0.95|l−k|.
The MSE values are displayed in both the cases when Πi = I
and Πi = Π̃i for i = 1, 2. Note that in the latter case, the
exact optimal weighting matrices are unavailable and their
sample estimates (13) are used in the simulation. As can be
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Fig. 1. MSEs of the estimated channel versus the number of
data samples N for the correlated Gaussian noise.

observed from this figure, the MSE of the channel vector es-
timate is much lower in the case when Πi = Π̃i than in the
case when Πi = I.

In Fig. 2 the receiver noise is modelled as multiple har-
monics with the background white noise [3], [6]. In this fig-

ure, [v(n)]k =
∑M

m=1

√
Pvmej(Ωmk+θ(n,m)) + ξk(n) where the

frequency offsets Ωm (m = 1, . . . , M) are randomly and inde-
pendently drawn from the interval [0, π/2] and θ(n, m) are the
random phases uniformly distributed in the interval [0, 2π].
Fig. 2 shows the experimental MSE curves versus the number
of the noise harmonics M for N = 100. User powers are equal
and η � A2

k/σ2 = 10 dB is assumed. The powers of all the
noise harmonics are also equal and the ratio of the total power
of these harmonics to the power of the white noise is given
by

∑M
m=1 Pvm/σ2 = 20 dB. As can be observed from Fig. 2,

the best estimation performance is achieved when Πi = Π̃i

for i = 1, 2. This figure also shows that the estimation per-
formance is quite robust against the increase of the number
of noise harmonics when Πi = Π̃i for i = 1, 2.

6. CONCLUSIONS

A novel blind subspace-based channel estimation algorithm
has been proposed for DS-CDMA systems operating in un-
known wide-sense stationary noise environments. The pro-
posed approach employs the centro-Hermitian property of the
noise covariance matrix along with the generalized correlation
decomposition (GCD) to estimate the channel vector of the
user-of-interest. The optimal values of the GCD weighting
matrices which maximally preserve the orthogonality of the
estimated noise subspace to the actual signal subspace are
obtained in the high SNR regime. It has been demonstrated
that such an optimal choice of the weighting matrices trans-
forms GCD to an extended form of the canonical correlation
decomposition. Simulation results show that the proposed
GCD-based approach can achieve a substantially improved
estimation performance as compared to its conventional SVD-
based counterpart.
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M
S
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Fig. 2. MSEs of the estimated channel versus the number of
noise harmonics M for the multiple-harmonics noise model.
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