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ABSTRACT

We propose a randomized transmission scheme for minimizing a
time-averaged cost metric in a cognitive radio. We assume that a
single cognitive radio (i.e., a transmitter and receiver) hops over N
orthogonal channels, each occupied by a primary user whose ON-
OFF activity is modeled by a two-state Markov chain. We assume
that the cognitive radio senses the activity in each channel at the be-
ginning of every symbol period, and that a usage cost is assigned to
each channel that depends on the channel’s physical-layer charac-
teristics and the sensing outcome. We fully characterize the trans-
mission scheme that minimizes the time-averaged cost, subject to
interference constraints imposed by the primaries. Finally, we eval-
uate the performance for two special cases of the cost: the bit error
rate and (lower and upper bounds on) the channel capacity.

Index Terms— cognitive radio, dynamic spectrum access, fre-
quency hopping, probabilistic transmission, interference constraints

1. INTRODUCTION

The dramatic growth in the number of devices using wireless ser-
vices has led to an overcrowding of the Federal Communications
Commission (FCC)-licensed spectrum [6]. Dynamic spectrum ac-
cess (DSA) techniques seek to increase the number of devices that
can use the licensed spectrum by allowing cognitive (or low-priority)
users to seek out and exploit holes in the transmissions of primary
(or high-priority) users, subject to interference constraints imposed
by the primaries [12]. In a basic model of (decentralized) DSA, the
cognitive radio operates in two phases [13], [1], [4], [11]. First, it
senses the activity of primary users at regular time epochs. Second,
based on these sensing results, its statistical knowledge of how the
primaries behave, and its knowledge of the interference power con-
straints, it adapts its transmission strategy in order to maximize the
expected number of successfully delivered packets (or bits) while
satisfying the interference constraints.

In this paper, we propose a randomized transmission scheme for
optimizing an arbitrary time-averaged cost metric in DSA. We as-
sume that a single cognitive radio (consisting of a transmitter and
receiver) hops over N orthogonal channels, each occupied by a pri-
mary user whose ON-OFF activity is modeled by a two-state continuous-
time Markov chain (CTMC). We assume that the cognitive radio
senses the activity in each channel at the beginning of every sym-
bol period, and that a usage cost is assigned to each channel that de-
pends on the channel’s physical-layer characteristics and the sensing
outcome. We fully characterize the (optimal) transmission scheme
that minimizes the time-averaged cost subject to interference con-
straints imposed by the primaries, under that assumption that these
interference constraints must be satis ed over suf ciently small time
intervals. Finally, we evaluate the performance for two special cases
of the cost metric: the bit error rate (BER) and (lower and upper
bounds on) the channel capacity.

1.1. Related Work

There is a growing body of literature on DSA for wireless cognitive
systems. We focus on decentralized and hierarchical approaches to
DSA, in which the cognitive system constrains the interference that
it in icts on the primary receiver.1 For collocated systems (in which
spatial separation is small), overlay and underlay systems are natural
design approaches [12]. In overlay systems, cognitive users detect
and transmit when primary users are silent, thus making use of idle
periods between packet transmissions of the primary system. In un-
derlay systems, cognitive users may transmit at the same time as the
primary, but must use spread-spectrum or related techniques to keep
their transmissions below the noise oor. Common analysis tools
for DSA include information theory, game theory [14], and Markov
decision processes.

Overlay approaches include [13], [1], [4], and [11]. These works
focus on time-slotted cognitive systems that sense primary activity
in a subset of all channels at the beginning of every slot. Based on
such sensing results, a Markov decision process framework is used
to maximize the cognitive throughput, i.e. the number of successful
packet transmissions per unit time, subject to collision constraints at
the primary receivers. In [13], it is assumed that the primary users
are also slotted, and that the cognitive and primaries use the same
symbol slots. Optimal and suboptimal channel sensing and access
strategies are derived. In [1], it is shown that the design of the ac-
cess policy in this scenario can be decoupled from the sensing policy
without loss of optimality. Both [13] and [1] provide an analysis for
the case of sensing errors. In [4] and [11], the primary users are
modeled by CTMCs. In [4], a closed-form optimal transmission
policy is derived when the interference constraints are in terms of
the percentage of permissible packet collisions, and when all chan-
nels are sensed in each symbol period. In [11], a closed-form op-
timal transmission policy is given when a single channel is sensed
in each symbol period. Underlay approaches have been approached
using spread spectrum and ultra-wideband techniques [5], as well
information theoretic concepts [3]. For example, in [3], information-
theoretic concepts are used to derive bounds on the largest rate that
the cognitive radio can achieve while not affecting the maximum
rate of the primary user, when the primary and secondary transmit
simultaneously.

Our model is neither a pure underlay nor a pure overlay model.
Unlike the overlay models described above, we seek to minimize
an arbitrary cost metric (that includes packet collisions as a special
case) that depends on the physical layer parameters, the power that
the cognitive imparts to each primary receiver, and the power that
each primary transmitter imparts onto the cognitive receiver. Un-
like underlay systems, we sense the channel and attempt to avoid
colliding with the primaries according to a function of the probabil-
ity, expected duration, and power of a collision. Our scheme most
resembles an underlay system with sensing-based adaptation.

1For a discussion on centralized schemes, see, e.g., [7].
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1.2. Notation

We use the following notation: (a) E[.] denotes expectation, (b)X ∼

N (0, σ2) indicates that X a zero mean Gaussian random variable
with variance σ2, and (c) if {ak}N

k=1 is a set of numbers, then [ak]
= [a1, . . . , aN ] denotes the associated row vector.

2. SYSTEM MODEL

We consider the operation of a single cognitive user in the presence
of N primary users, as described below.

2.1. Primary Users

Assume that there exist N primary users and that each user oper-
ates independently and occupies a separate orthogonal channel.2 At
a time t, the kth primary transmitter is either ON (state 1) or OFF
(state 0). Let δk(t) ∈ {0, 1} denote the random process describing
the ON-OFF activity of the kth primary transmitter. We assume that
the statistics {δk(t)}t are described by a two-state CTMC with hold-
ing parameter λk in state 1 and μk in state 0. The transition matrix
of δk(t) is [8, p.391]

Pk(t) =
1

λk + μk

[
λk + μke−(λk+μk)t μk − μke−(λk+μk)t

λk − λke−(λk+μk)t μk + λke−(λk+μk)t

]
,

(1)
where the (i, j)th entry above is the probability that δk(t) is in state
(j−1) at time t, given that it was it was in state (i−1) at time 0.

2.2. Cognitive User

The cognitive user operates using a slotted structure with symbol
period Ts according to the protocol depicted in Figure 1. Consider
an arbitrary symbol slot. At the beginning of the slot, the cognitive
senses the activity in all N channels. Let ω � [ω1, . . . , ωN ], ωk ∈
{0, 1}, denote the sensing outcome. The cognitive then determines
the optimal probability transmission vector based on ω. Denote this

p∗(ω) � [p1(ω), . . . , pN (ω), pN+1(ω)], (2)

where pN+1(ω) denotes the probability of not transmitting in the
current slot. As described below, an optimal probability transmis-
sion vector is one that minimizes the time-averaged cost subject to
interference constraints. We will sometimes omit the index ω for
terms appearing in (2) for brevity.

2.3. Interference Constraint and Cost Metric

Interference constraints limit the fraction of time that each channel
can be used. Assume that the kth primary receiver advertises an
average interference power constraint γk (Watts) to the cognitive,
and let vk be the average power that the cognitive transmitter imparts
onto the kth primary receiver when it transmits. For each xed ω,
we require that

vk pk(ω) ≤ γk, k ∈ {1, . . . , N}. (3)

Under this constraint, the interference power to the kth primary is no
greater than γk, conditioned on the times that the primary is trans-

2Channels could be made orthogonal in time (e.g., TDMA), frequency
(e.g., OFDM), or via spreading codes (e.g., CDMA).

mitting.3 For each ω, constraint set on p∗ is

C =
{

pk ∈
[
0, min

(
γk
vk

, 1
)]

k ∈ {1, . . . , N} , pN+1 ∈ [0, 1],
N+1∑
k=1

pk = 1

}
.

Let M(k|ωk) ≥ 0 denote the cost of transmitting over chan-
nel k given that ωk was last sensed. It is assumed that the cog-
nitive computes or else acquires access to the 2N scalar values,
{M(k|ωk)}k∈{1,...,N},ωk∈{0,1} prior to operation. The cognitive
seeks the transmission vector which minimizes the time-averaged
cost subject to the interference constraints and subject to using the
OFF state only when probability cannot be allocated to any other
state because of the interference constraint. It can be shown that the
cognitive determines p∗(ω) according to

p∗ = arg min
p ∈ C

{
N∑

k=1

pk M(k|ωk) + pN+1

(
max

k
M(k|ωk) + ε

)}
,

(4)

where ε > 0 is an arbitrary constant which ensures that the “cost”
assigned to pN+1 (the OFF state) is strictly greater than the cost
assigned to any of the N channels.4

3. OPTIMAL TRANSMISSION VECTOR

The optimization problem above has a linear objective function with
non-negative weights and linear constraints. We provide the solution
in closed form. De ne p̄� � γ�/v�. It will be instructive to give the
optimal solution separately depending on the value of

∑N
�=1 p̄�. The

proofs follow by contradiction and are omitted.

3.1. Non-Adaptive Transmission

Consider rst the case that
∑N

�=1 p̄� ≤ 1. The solution is

pk = p̄k, ∀k ∈ {1, . . . , N} and pN+1 = 1−
N∑

�=1

p̄�.

This solution has some important properties. First, all N channels
are utilized. However, if

∑N
�=1 p̄� < 1, then not all times-slots are

utilized since pN+1 > 0. Second, the solution is non-adaptive, since
it (clearly) does not depend on ω.

3.2. Adaptive Transmission

Consider next the case that
∑N

�=1 p̄� > 1. The solution is given by
the following steps

1. Order channels. Let k1, . . . , kN ∈ {1, . . . , N} be chosen
distinctly so that M(k1|ωk1) ≤ · · · ≤ M(kN |ωkN ).

2. Find the number channels to use. Let Γ ∈ {1, . . . , N−1} be
the largest integer such that

∑Γ
�=1 p̄k� ≤ 1.

3. Set probabilities. Set pk� = p̄k� , ∀� ∈ {1, . . . ,Γ}, pkΓ+1 =

1−∑Γ
�=1 p̄k� , and pk = 0 otherwise.

This solution also has some important properties. First, we only
utilize all N channels if Γ = N−1 and

∑N−1
�=1 p̄k� �= 1. Second, the

OFF state is not used, since it can be veri ed that pN+1 = 0. Third,
this strategy is adaptive since it depends on {ωk}. An illustrative
example will be given in Section 5.

3An alternative to (3) is the constraint vk E[pk(ω)] ≤ γk . However,
under this formulation, the interference constraint could be violated over long
time intervals, when the primaries (therefore, ω) evolve slowly relative to Ts.

4The rightmost term in (4) is necessary because the optimization has been
cast as a minimization. This term does not appear in an equivalent maximiza-
tion formulation.
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4. EXAMPLE 1 - BIT ERROR RATE

We assign to M(k|ωk) the average BER when we use the kth chan-
nel when ωk is sensed. To derive values of this metric we model
the cognitive channel as an additive white Gaussian noise (AWGN)
channel with additional interference due to primary transmissions,
and for simplicity, assume that the cognitive uses Binary Phase Shift
Keying (BPSK) modulation. We assume the following symbol-level
input-output relationship in the kth channel5

Z� = ±
√

Es + V� + I�, (5)

where � denotes discrete time, Es is the received energy per sym-

bol, and V�
i.i.d.
∼ N (0, σ2V ) models receiver noise of average power

σ2V . Let σ2k denote the average power that the kth primary imparts
onto the cognitive receiver when it transmits, and de ne the ran-
dom variable (r.v.) Yk,� � σ2k

1
Ts

∫ �Ts

t=(�−1)Ts
δk(t)dt. Conditioned

on Yk,�, I� is a zero-mean Gaussian r.v. with variance Yk,�, i.e.,
I�|Yk,� ∼ N (0, Yk,�) (the marginal distribution of I� is dif cult to
obtain and will not be used in the remainder of the analysis). Note
that, for any xed value of Yk,�, (5) is a AWGN channel. Finally,
de ne Yk � Yk,1 for use when the subscript � is irrelevant.

The BER-optimal symbol-level detector compares Z� to the zero
threshold for each � [9]. The ergodic BER is easily found by condi-
tioning on Yk,� and averaging over Yk,�. We get

M(k |ωk) = E

[
Q

(√
Es

σ2V + Yk

) ∣∣∣∣∣ωk

]
, (6)

where Q(.) is the Gaussian Q-function [9, p.84]. Consider the spe-
cial case that σ2k � 1, ∀k, as this might model the case where the
cognitive operates in the periphery of the primary network. We can
use an asymptotic expansion on Q(.) to show that

lim
σ2

k
→0

M(k|ωk) = Q

(√
Es

σ2V

)
+

√
Es

2πσ2V
e
− Es
2σ2

V E [Yk |ωk] .

Only the right-most term in the above equation depends on k. Thus,
using the metric (6) when σ2k � 1, ∀k, is asymptotically equivalent
to minimizing the expected interference power, i.e., E[Yk|wk].

We now compare the BER-performance of (6), which selects
channels speci cally to minimize the BER, to the metric which se-
lects channels to minimize the expected number of collisions. A
collision is de ned as occurring if the primary transmits at any point
during which the cognitive transmits. The metric for this scenario
is [4]

M(k|ωk) =

{
1, if ωk = 1,

1− e−λkTs , if ωk = 0,
(7)

where the second line is the probability that the cognitive starts to
transmit in the next Ts seconds given that ωk = 0.

We plot the time-averaged BER versus the signal to noise ratio
(SNR) � Es/σ2V for these two metrics in Figure 2 (parameters are
given in the caption). Speci cally, we assume that ω starts in a state
governed by the stationary distribution of the Markov chain, and then
simulate the evolution of ω in time according to (1). At high SNR,
when receiver noise is negligible and the dominating factor is inter-
ference noise from the primary, (6) results in a BER several orders
of magnitude smaller than (7). This is because (6) takes into the ac-
count the probability, expected duration, and interference power of

5We have derived this model from continuous-time waveforms by assum-
ing that the interferer is a zero-mean Gaussian random process, perfect fre-
quency and phase synchronization, a square matched lter at the receiver,
and using the standard methodology [9]. We omit these details for brevity.

a collision, whereas (7) takes into account only the probability of a
collision. However, the derivation of (6) requires detailed assump-
tions on the cognitive channel that are not necessary in (7).

5. EXAMPLE 2 - CHANNEL CAPACITY

Let M(k|ωk) denote the capacity of the kth channel when ωk is
sensed, and using the channel model (5).6 Unfortunately, a technique
similar to the one used to derive M(k|ωk) in the last section cannot
be used here. This is because the ergodic capacity requires that the
receiver know Yk,� [10], which is not the case. Thus, we rely on
upper and lower bounds on capacity.

A lower bound on M(k|ωk) is found by replacing the r.v. I�|ωk

with a Gaussian r.v. of the same variance [2, p.263]. The variance is

VAR[I�|ωk] = E[I2� |ωk] = E
[
E[I2� |ωk, Yk,�] |ωk

]
= E

[
E[I2� |Yk,�] |ωk

]
= E [Yk,�|ωk] ,

which can easily computed in closed form using (1). Using the
expression for the capacity of the AWGN, we get the following
tractable lower bound

M(k|ωk) ≥ 1

2
log

(
1 +

Es

σ2V + E [Yk |ωk]

)
. (8)

An upper bound on capacity is found as follows. Assume that by
sensing, the transmitter and receiver receive full knowledge of the
interference pattern in the �th symbol interval, i.e., δk(t), t ∈ [(� −
1)Ts, �Ts], rather than just wk = δk(�Ts). The interference is then
Gaussian distributed with known variance. We get the following
tractable upper bound on capacity

M(k|ωk) ≤ E

[
1

2
log

(
1 +

Es

σ2V + Yk

) ∣∣∣∣∣ωk

]
. (9)

The lower and upper bounds converge to the same value, and
therefore the exact capacity, as VAR[Yk,�|ωk] → 0. The proof fol-
lows from the fact that (8) can be related to (9) using Jensen’s in-
equality. Using (1), it can be veri ed that for ωk ∈ {0, 1}

lim
Ts→0

VAR[Yk,�|ωk] = lim
Ts→∞

VAR[Yk,�|ωk] = 0. (10)

This behavior is veri ed in Figure 3, where we plot time-averaged
values of the lower (8) and upper (9) bounds on capacity versus the
symbol period when N = 5 for SNR ∈ {0, 10} dB (other param-
eters are given in the caption). As expected, the lower and upper
bounds are tight for values of the values of Ts indicated by (10).

In Figure 4, we verify the observations on p∗(ω) made in Sec-
tion 3. We plot pk(ω), k ∈ {2, 3, 6}, over 200, 000 realizations of
ω, assuming that ω is initially in a state governed by the stationary
distribution of the Markov chain and that it evolves according to (1).
We use the same parameters as in Figure 3 but xing SNR = 10 dB
and Ts = 0.01. For clarity, we have plotted a histogram of the values
taken on by each function (i.e., we have sorted the x-axis). Note that∑

p̄� > 1. From Section 3.2, we expect p6(ω) = 0 and for p2(ω)
and p3(ω) to adapt with ω. Indeed, it is seen that both p2(ω) and
p3(ω) take on four different values depending on ω, including zero.
We have repeated this gure for [p̄k] = [0.12, 0.18, 0.22, 0.25, 0.20]
(not shown). Here,

∑
p̄� = 0.97 < 1. As predicted in Section

3.1, it is seen that there is a non-zero probability of not transmitting,
p6(ω) = 0.03 > 0, and that the scheme does not adapt with ω, as
p2(ω) = 0.18 and p3(ω) = 0.22 independently of ω.

6We seek to maximize the metric in this case. This requires only trivial
modi cation of optimal solution given in Section 3.
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6. SUMMARY AND FUTURE WORK

We have proposed an optimal randomized transmission scheme for
minimizing an arbitrary time-averaged cost metric in DSA. For a
summary of our model and key results, see the second paragraph
of Section 1. It was seen that by designing directly for the met-
ric of interest (e.g., BER or capacity), we can improve performance
and provide additional insights relative to schemes which minimize
only the expected number of packet collisions. We made some sim-
pli cations to facilitate the analysis. It was assumed that sensing
consumes no resources (time or energy). As future work, we would
like to study sensing as part of resource budget. An optimization
would potentially answer how many channels to sense, and which
ones. We assumed that both the transmitter and receiver sense chan-
nels perfectly. When sensor errors are introduced, the transmitter
and receiver will occasionally lose synchronization in their mutual
hopping pattern. It would be interesting to see if there exist analytic
approaches to this problem. Finally, we are interested in studying
energy allocation and adaptive modulation based on ω.
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Fig. 1. At the start of each symbol slot, the cognitive senses the
(instantaneous) primary activity in all N channels. Based on the
sensing outcome, it constructs a distribution on the next channel on
which to transmit. It then transmits according to this distribution.
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