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ABSTRACT

A game-theoretic analysis is used to study the effects of re-

ceiver choice and transmit power on the energy efficiency

of multi-hop networks in which the nodes communicate

using Direct-Sequence Code Division Multiple Access (DS-

CDMA). A Nash equilibrium of the game in which the net-

work nodes can choose their receivers as well as their transmit

powers to maximize the total number of bits they transmit per

unit of energy spent (including both transmit and operating

energy) is derived. The energy efficiencies resulting from the

use of different linear multiuser receivers in this context are

compared for the non-cooperative game. Significant gains

in energy efficiency are observed when multiuser receivers,

particularly the linear minimum mean-square error (MMSE)

receiver, are used instead of conventional matched filter re-

ceivers.

Index Terms— Code division multiaccess, Communica-

tion systems, Game theory

1. INTRODUCTION

In a wireless multi-hop network, nodes communicate by pass-

ing messages for one another; permitting multi-hop commu-

nications, rather than requiring one-hop communications, can

increase network capacity and allow for a more ad hoc (and

thus scalable) system (with little or no centralized control).

For these reasons, and because of their potential for com-

mercial, military, and civil applications, wireless multi-hop

networks have attracted considerable attention over the past

few years. In these networks, energy efficient communication

is important because the nodes are typically battery-powered

and therefore energy-limited. Work on energy-efficient com-

munication in these multi-hop networks has often focused on

routing protocols; this work instead looks at power control
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and receiver design choices that can be implemented indepen-

dently of (and thus in conjunction with) the routing protocol.

One approach that has been very successful in researching

energy efficient communications in both cellular and multi-

hop networks is the game-theoretic approach described in [1,

2]. Much of the game-theoretic research in multi-hop net-

works has focused on pricing schemes (e.g. [3, 4]). In this

work, we avoid the need for such a pricing scheme by using

instead a nodal utility function to capture the energy costs. It

further differs from previous research by considering receiver

design, as [5] does for cellular networks. This work further

differs from existing research, including [6], through an ex-

tension of the utility function that considers the total energy

costs, not just the transmit energy.

We propose a distributed noncooperative game in which

the nodes can choose their transmit power and linear receiver

design to maximize the number of bits that they can send per

unit of power. After describing the network and internodal

communications in Section 2, we describe the Nash equilib-

rium for this game, as well as for a set of games with set

receivers, in Section 3. We present numerical results and a

conclusion in Sections 4 and 5.

2. SYSTEM MODEL

Consider a wireless multi-hop network with K nodes (users)

and an established logical topology, where a sequence of con-

nected link-nodes l ∈ L(k) forms a route originating from a

source k (with k ∈ L(k) by definition). Let m(k) be the node

after node k in the route for node k. Assume that all routes

that go through a node k continue through m(k) so that node k
transmits only to m(k).1 Nodes communicate with each other

using DS-CDMA with processing gain N (N chips per bit).

The signal received at any node m (after chip-matched fil-

tering) sampled at the chip rate over one symbol duration can

1If the routing has a node, k, transmitting to multiple nodes, new “nodes”

can be introduced, collocated with k, each with a different destination. The

modifications to the results, taking into account the channel dependence, is

straightforward.
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be expressed as

r(m) =

K∑
k=1

√
pkh(m)

k bksk + w(m) (1)

where pk, bk, and sk are the transmit power, transmitted sym-

bol, and (binary) spreading sequence for node k; h(m)
k is the

channel gain between nodes k and m; and w(m) is the noise

vector which is assumed to be Gaussian with mean 0 and co-

variance σ2 I. (We assume here pm = 0.) Assume the spread-

ing sequences are random, i.e., sk =
1√
N

[v1 . . . vN]T , where the

vi’s are independent and identically distributed (i.i.d.) random

variables taking values {−1,+1} with equal probabilities. De-

note the cross-correlations between spreading sequences as

ρk j = sT
k s j, noting that ρkk = 1 for all k.

Let the vector c(m)
k represent the linear receiver at the mth

node for the kth signature sequence. The output of this re-

ceiver can be written as

y = ck
T r(m) (2)

=
√

pkh(m)
k bkck

T sk +
∑
j�k

√
p jh

(m)
j b jck

T s j + ck
T w(m). (3)

The signal-to-interference-plus-noise ratio (SINR), γk, of the

kth user at the output of receiver m(k) is

γk =
pkh(m(k))

k
2 (

ck
T sk

)2
σ2ck

T ck +
∑

j�k p jh
(m(k))
j

2 (
ck

T s j

)2 . (4)

Each user has a utility function that is the ratio of its ef-

fective throughput to its expended transmit and computation

power, i.e.,

uk =
Tk

pk + qk
. (5)

Here, the throughput, Tk, is the net number of information

bits sent by k (generated by k or any node whose route goes

through k) and received without error at the intended destina-

tion, m(k), per unit of time and qk is the power expended by

the node to implement the receiver. (We assume that all the

congestion control is done in the choice of routing.)

Following the discussion in [5], we will use

Tk =
L
M

R f (γk) (6)

where L and M are the number of information bits and the

total number of bits in a packet, respectively (without loss of

generality assumed here to be the same for all users); R is

the transmission rate, which is the ratio of the bandwidth to

the processing gain and is taken for now to be equal for all

users; and f (·) is an efficiency function that closely approxi-

mates the packet success rate. This efficiency function can be

any increasing, continuously differentiable, sigmoidal2 func-

tion with f (0) = 0 and f (+∞) = 1. Let its first derivative be

denoted as f ′(γ) = ∂ f (γ)
∂γ

and let γ0 be its inflection point. See

[5] for more discussion of the efficiency function.

Using (6), (5) becomes

uk =
L
M

R
f (γk)

pk + qk
. (7)

When the receiver used is a matched filter (MF) (i.e.

c(m(k))
k = sk), the received SINR is

γMF
k =

pkhm(k)
k

2 (
sk

T sk

)2
σ2sk

T sk +
∑

j�k p jh
m(k)
j

2 (
sk

T s j

)2 (8)

=
pkhm(k)

k
2

σ2 +
∑

j�k p jh
m(k)
j

2
ρ2

k j

. (9)

When the receiver is a linear minimum mean-squared er-

ror (MMSE) receiver , the filter coefficients and the received

SINR are [7]

cMMSE
k =

√
pkhm(k)

k

1 + pkhm(k)
k

2
sT

k A−1
k sk

A−1
k sk (10)

and

γMMSE
k = pkhm(k)

k
2
sT

k A−1
k sk, (11)

where Ak = σ
2 I+
∑

j�k p jh
m(k)
j

2
s jsT

j .

When the receiver is a decorrelator3 (DE) (i.e. C =

[c1 · · · cK] = S(ST S)−1 where S = [s1 · · · sK]), the received

SINR is

γDE
k =

pkhm(k)
k

2

σ2cT
k ck
. (12)

For any linear receiver with all nodes’ coefficients chosen

independently of their transmit powers (including the MF and

DE), as well as for the MMSE receiver, the SINR for user k is

the product of user k’s power and a factor that is independent

of user k’s power: γk(pk,p−k) = pkgk(p−k), where p−k is a

vector of the powers of all users except for user k and gk is a

function that depends on the receiver type, the channel gains,

qk, and the users’ spreading sequences. This means that

∂γk

∂pk
=
γk

pk
= gk(p−k), (13)

so γk is strictly increasing in pk. Thus, for a fixed receiver

type and fixed powers for the other users, there is a one-to-

one relationship between the power of user k and its SINR.

2A continuous increasing function is sigmoidal if there is an inflection

point above which the function is concave and below which the function is

convex.
3Here, we must assume that K ≤ N.
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Let p0(p−k) =
γ0

gk(p−k)
be the unique positive number for which

γr
k(p0(p−k),p−k) = γ0, where, as before, γ0 is the inflection

point of the efficiency function f (γ).

3. THE NONCOOPERATIVE POWER-CONTROL
GAME

Let G =
[
K , {Ak}, {uk}

]
denote the noncooperative game

where K = {1, . . . ,K} and Ak = [0, Pmax] × R is the strat-

egy set for the kth user. Here, Pmax is the maximum allowed

power for transmission andR is the set of allowable receivers,

for now restricted to the MF, DE, and MMSE receivers. Each

strategy in Ak can be written as ak = (pk, rk), where pk and

rk are the transmit power and the receiver type, respectively,

of user k. Then the resulting noncooperative game can be

expressed as the maximization problem for k = 1, . . . ,K:

max
ak

uk = max
pk ,rk

uk(pk, rk) (14)

=
L
M

R max
rk

(
max

pk

f (γrk
k (pk,p−k))

pk + qrk
k

)
, (15)

where γk and qk are expressed explicitly as functions of the

transmit power and receiver type.

For each of the receivers, r, inR, letGr =
[
K , {[0, Pmax]}, {uk}

]
denote the noncooperative game that differs from G in that

users cannot choose their linear receivers but are forced to

use the receiver r. The resulting noncooperative game can

be expressed as the following maximization problem for

k = 1, . . . ,K:

max
pk

uk(pk, r) =
LR
M

max
pk

f (γr
k(pk,p−k))

pk + qk
. (16)

The following results are summarized without proof due

to space constraints.

When given the choice between receivers, it is optimal for

the users to use MMSE receivers. Given a certain system and

fixed powers (p) for all other users, there is a unique optimal

power level for each user, p̃(p), that satisfies for each k

∂

∂p
f (γk(p,p−k))

p + qk

∣∣∣∣∣
p= p̃k

= 0 (17)

and it occurs in the concave region of the efficiency func-

tion: p̃k(p) > p0 ∀p ∈ �K
+ . The game has at least one Nash

equilibrium and for any Nash equilibrium, p′, it holds that

p̃(p′) = p′. Then, as long as p ≥ p′ =⇒ p̃(p) ≥ p̃(p′) (that

is, that a node never lowers its power when other nodes don’t

lower theirs), the Nash equilibrium is unique. Furthermore,

the algorithm where, for each time t, the users use the power

described by p(t) = p̃
(
p(t − 1)

)
converges to the unique Nash

equilibrium for any initial choice of power vector.

The solution to γ f ′(γ) = f (γ) is a lower bound on the

achieved SINR at the Nash equilibrium; as qk increases, so

does γk. That is, as the power necessary to run increases, the
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Fig. 1. Mean utility for the different receivers

nodes aim for a higher SINR: to make the transmission worth-

while, they need more throughput. Because of this, for the

MF and MMSE receivers, the utilities of all users decreases

when any user’s value of qk increases (for the DE receiver,

only the kth user’s utility decreases).

For the decorrelator, the Nash equilibrium is Pareto opti-

mal. For the MMSE and MF receivers, the Nash equilibrium

is not Pareto optimal and can be improved upon if every user

decreases its power by a small factor.

4. NUMERICAL RESULTS

Consider a multi-hop network with K nodes distributed ran-

domly in a square whose area is 100K square km, surround-

ing an access point in the center. For simplicity, the simu-

lations assume a routing scheme where all nodes transmit to

the closest node that is closer to the access point (or the ac-

cess point of that is closest). The packets each contain 100

bits of data and no overhead (L = M = 100); the trans-

mission rate is R = 100 kb/s; the thermal noise power is

σ2 = 5 × 10−16 Watts; the channel gains are distributed with

a Rayleigh distribution with mean 0.3d−2, where d is the dis-

tance between the transmitter and receiver; and the processing

gain is N = 32. We use the same efficiency function as [5],

namely f (γ) = (1 − e−γ)M , which can be shown to satisfy the

conditions for the existence of a unique Nash equilibrium. Fi-

nally, the amount of energy that a node has to expend to run,

qk, is assumed to be the same for all nodes and is allow to

range from 0.0001 Joules to 1 Joule per transmission (equiv-

alently, for the rate and packet size given, it ranges between

0.001 Watts and 10 Watts).

Figure 1 shows the mean utility (averaged over 100 real-

izations of the system) for the different receivers as a function

of the system load. Here the load ranges from 0 to 1.5. For
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Fig. 2. Utility for all 16 users using the MF for one scenario

with β = 1
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and q = 0.01
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Fig. 3. Power for all 16 users using the MF for one scenario

with β = 1
2

and q = 0.01

loads greater than 1, the DE receiver cannot be used. Chang-

ing the value of q by a factor of ten for all the users changes

the mean utility by roughly a factor of ten as well. The MF

receiver is most affected by the increased load, with the mean

utility dropping by about a factor of ten when the load in-

creases from 10% to 50%. The performance of the DE and

MMSE receivers are similar, although the MMSE receiver

outperforms the DE receiver at all points, with more signif-

icant gains at high load.

As shown above, for the MMSE and MF receivers, the

Nash equilibrium point is not Pareto optimal. This is partic-

ularly obvious for the matched filter. Figure 2 shows how

the utility for all 16 users in one scenario change with time

when the simple algorithm described above is run. Notice that

all users have better utility before convergence. In fact, for

this example, mean{uk} achieves its maximum at t = 2 while

mink{uk} achieves its maximum at t = 6. Figure 3 shows the

transmit power for all users in the same example; from this

it is clear that the users are transmitting at higher and higher

powers to the detriment of their utilities. The MMSE receiver

tends to do much better (though it would still be better for

all users to use slightly less power each); the MMSE receiver

also converges much faster. The DE receiver converges in just

one time step (due to the independence of the power choices

of different users) and results in a Pareto optimal solution.

5. CONCLUSION

We have analyzed the cross-layer issue of energy efficient

communication in multi-hop networks using a game theoretic

model. We’ve extended previous work in this area to consider

the energy costs used in running the receiver and transmitter,

in addition to the actual transmit costs. Amongst all linear re-

ceivers, the MMSE receiver is optimal. For the MF, MMSE,

and DE receivers, a unique Nash equilibrium exists, though

for the MF and MMSE receivers, this Nash equilibrium is not

Pareto optimal.
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