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] ABSTRACT

In this paper, we propose a generalized utility function model for
cooperative slotted Aloha in a distributed system. Multiuser diver-
sity gains are achieved by appropriately designing the Nash equi-
librium thresholds for the selfish users. The network enforces fair-
ness among different users by employing a pricing policy that fa-
vors equal access probabilities. This generalized game model pro-
vides the flexibility in designing the utility function associated with
QoS. Our study on the impact of different utility function models
shows that the multiuser diversity gains achieved by different mod-
els remain constant under the throughput optimization framework
and vary slightly under the revenue optimization framework.

Index Terms— Game theory, Aloha, multiuser diversity, pric-
ing, medium access control

1. INTRODUCTION

Multiuser diversity has been proposed as an effective technique to
maximize the total information-theoretic capacity in the context of
multiuser communications [1]. The basic idea of multiuser diver-
sity is to exploit the randomness of fading channels among different
users. The larger the dynamic range of channel fluctuations and the
number of users, the larger the available multiuser diversity gain is.
However, centralized scheduling schemes require significant infor-
mation exchange between users and the access point to achieve the
multiuser diversity gain. Consequently, a distributed access scheme
which reduces this information exchange but can still utilize the mul-
tiuser diversity is very desirable.

In a distributed system, users may act selfishly to maximize
their own performance. In the literature, game-theoretic formula-
tions have become a very useful tool for analyzing medium access
protocols, especially in the presence of selfish users that seek to max-
imize their own performance, and in particular for slotted Aloha [2].
In [3], we proposed a game model associating the channel charac-
teristics with the transmission costs to achieve multiuser diversity
gains, in which a Nash equilibrium threshold is designed to account
for statistical channel characteristics. However, the game model in
[3] assumes that users use the system resources aggressively, which
may not be the case for some delay-insensitive services. In this pa-
per, we propose a generalized utility function model and show the
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effects of the different models on the pricing, the equilibrium thresh-
old, the throughput, the revenue and the multiuser diversity gain.

This paper is organized as follows. In Section 2, a game-theoretic
formulation is proposed. The analysis of the Nash equilibrium is pre-
sented in Section 3. Simulation results are discussed in Section 4 and
conclusions are presented in Section 5.

2. GAME MODEL

In this section, we present a game-theoretic model for a distributed
slotted system. We assume that all users can estimate their own chan-
nel characteristics by listening to a periodically-transmitted beacon
signal from the base station (see also [4]).

Each slot of the system is a one-stage game. At the beginning of
each slot, all users learn the current state of the game—- the number
of users (V) who currently have packets to send (active users) and
their own channel characteristics. The number of active users can
be estimated using the Pseudo-Bayesian Aloha algorithm in [5]. In
this paper, we investigate the scenario where all the users are active
users. Each of these users has two possible actions: transmit (T) or
wait (W). When a user transmits, its transmission can either succeed
(S) or fail (F). The gain associated with a successful transmission is
anormalized throughput of 1, while the cost of transmission for user
1 1S ¢;, and the network’s current charge for the successful packet of
user ¢ is u;. If user ¢ transmits and succeeds in a given slot, then that
user will receive a utility of 1 — ¢; — p; for that slot (throughput —
cost — price paid). If the user refrains from transmission in a partic-
ular slot (waits), this will result in one slot delay for that user. In [3],
we followed an aggressive approach toward transmission and thus
this delay is associated with the loss in the throughput the user could
have achieved if it transmitted and succeeded, which is determined
as —(1 — ¢; — p;). However, for some services, the delay cost may
be constant, e.g., for a delay-insensitive user, the delay cost may be
zero. Thus, in this paper, we propose a generalized utility function
for the waiting cost, i.e., v(cs, ws, b), which is a function of ¢;, u;
and a constant delay cost b. If user ¢ transmits but fails, it will incur a
transmission cost ¢; as well as a one-slot delay, but it will not pay for
the transmission (we assume that a user is charged only for success-
ful transmissions). Therefore, the utility of this user in this case can
be defined as —v(c;, i, b)) — ¢;. Each user’s goal is to maximize
its own utility. The utility function for user ¢ is summarized as

1—ci — pi T and S

Utility = —v(es, i, b) W )
—c; —v(es, pi, b)) Thut F
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It is important to note that the transmission cost ¢; should be a nor-

malized function in the range of (0,1) and is related to the transmis-
sion energy cost. In wireless systems, channels change from one
slot to another. The higher the channel power gain, the smaller the
transmission power (hence transmission cost) to achieve the same
spectral efficiency. Thus, the transmission cost should be defined as
a monotonically-decreasing function of the channel power gains.

3. EQUILIBRIA FOR THE COLLISION MODEL

In this paper, we consider the classical collision model, where a
transmission is considered to be successful only when a single user
transmits. We consider a fair game model, where all users access the
system with the same probability p. Then, the utility user i gets from
selecting action T is

UA(T) = (=ei = v(es, 10,8)) [1 = (1 =) |+ (1mei—p) (1=p) V.

@

The utility user ¢ gets with action W is
Us(W) = —v(ci, pi b). (©)

In this paper, our goal is to optimize the system performance by
appropriately selecting the price p; according to the transmission
costs {ci, i = 1,--- , N} of the users, so that each user can achieve
its maximum utility by taking appropriate actions: T or W. If the
utility of T is larger than W, then the user transmits. Otherwise, he
waits. Then, the Nash equilibrium can be defined as follows:

A Nash equilibrium strategy will be a profile of strategies
(s1,...,sn), where s; € {T,W}, such that for player i, Vs, €
{T, W}, U; (Sf, Sil) > Ui(Si, 5*—7;)’ where s_; = Sj#ie

Note that U;(.) is defined in (2) and (3) and the effects of the
other players are reflected by p. This equilibrium changes from one
slot to another as the transmission costs change. To maximize its
own utility, a user will take an action 7" when U;(T") > Us(W).
Otherwise, it will wait. From (2) and (3), we can obtain

Ui(T) > Us(W) = ¢ < (1+v(ci, s, b) — pa) (1= p)¥ 1. (4)

From (4), we can obtain

ci < fi(pi, b, p), (%)
where f; is a function of p;, b and p.
Define

Ti:fi(uivbvp)z (6)

where 7; is called the equilibrium threshold. Then we have
C; S Ti. (7)

Note that each user estimates his channel power gain through
a periodically transmitted beacon signal and learns the best strat-
egy periodically by comparing the transmission cost ¢; (which is a
function of channel power gain) with the equilibrium threshold ;.
Once 7; is obtained, each user can decide whether it transmits or not.
Then, the problem of finding a Nash equilibrium strategy is reduced
to finding an equilibrium threshold. The users whose transmission
costs are smaller than the equilibrium threshold will transmit their
packets at this time slot.
Now, let us analyze the relationship among 7;, p and p;. Since p is
the probability that a user transmits, we have

p=P{U(T) > Us(W)} = P{c; <7} £ Fe, (),  (8)

where F., denotes the cumulative probability distribution function
(CDF) of ¢;. We obtain

i = F. ' (p), )

and
:ui:fi71(7i7b’p):fiil(chl(p%b:pL (10)
from (8) and (6), respectively. It can be seen from (9) that the equi-
librium threshold 7; does not change with the different utility func-
tions.
Examples:
1. Aggressive model in [3]: v; = (1—c;—p;), and f; (i, b,p) =

20—p)(A-p)V ! - it (gt
Waﬂdllq = 1—W = 1-

FoM )+ ) a-p)N !
2(1-p)N -1
2. Constant model: v; = b. The waiting cost is a constant,
which is reasonable for the delay-insensitive services. Thus
filpi b,p) = (14+b— )1 —p)V " and i = 1+ —

- Fl ()
=T = 1 +0— o=

3.1. Throughput Optimization

Here, we describe how the network adjusts pricing to achieve the
maximum throughput. It is well known that the network throughput
S of a slotted Aloha system is

S =Np(1-p)N! (11

and the maximum throughput is achieved when p = 1/N [5]. To
obtain the same maximum throughput, we set the transmission prob-
ability to p = 1/N. Therefore, the equilibrium threshold is obtained
from (9), i.e.,

= (5, (12)

and the optimal pricing strategy to maximize the throughput is ob-
tained from (10), i.e.,

pi= b)) = FNE G ), (9)

3.2. Revenue Optimization

In the previous subsection, the network decides the price aiming to
maximize the throughput of the whole network. In this subsection,
we consider a more realistic objective for the service provider which
is to maximize revenue. Assume that the network charges only for
successful transmissions. To achieve fairness, the transmission prob-
abilities for all users are enforced to be the same and hence the rev-
enue for the network is given by

N
R=> mp1-p)~ (14)
=1

Substituting p; given in (10) into (14) and setting the derivative of
(14) to zero, we can obtain the optimum p, and further obtain 7; and
w; from (9) and (10), respectively.

4. SIMULATION RESULTS

The simulation results are obtained from 100, 000 independent frames
and we assume a Bit-Error-Rate requirement of BER=10"° and a
corresponding Signal-to-Noise ratio requirement of SNR=15dB.
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4.1. System Model

We assume that the channels between users and the access point are
characterized by independent fading. The lowpass equivalent chan-
nel gains {h;, ¢ = 1,2,...N} between an arbitrary user ¢ and the
access point are assumed to be independent zero-mean unit-variance
circularly-symmetric complex Gaussian random variables. Conse-
quently, the channel power gains G; = |h;|? (i = 1,2, ..., N) have
exponential distribution with mean ‘1°, i.e,

Fi(Gi) = (1 — e “)u(Gy), (15)

where u(G;) is the unit-step function. We define the transmission
cost to be ¢; = 1 — F;(G;). This definition preserves the required
properties for ¢;, namely, normalization, and monotonically decreas-
ing with increased channel power gains®. Thus, we obtain

Fci(Ti) = P{l — FL(G-L) < Ti} = P{GL > Fi_l(l — TL')} = Ti.

(16)
From (9) and (10), we obtain
Ti=p&r i=12..N, (17)
and . )
ni = fi (1i,b,p) = f; " (p,b,p). (18)

Examples revisited:

1. Aggressive model in [3]: The optimum thresholds and pricing
are given in [3].

2. Constant model: (18) becomes

p A .
i=1l+b— —————=pu, i=1,2,...,N. 19
% + Tt Wt 19
For throughput optimization, the threshold and the pricing
can be obtained from (12) and (19), respectively, as 7 = %
1
and uy = 14+b— W For revenue optimization, R
N
becomes
p N-1
R=N1+b— ——)p(1— . 20
(1+ (1_p)N_1)p( p) (20)

The optimum p can be obtained from (20). Then, the equi-
librium threshold and pricing can be obtained from (17) and
(19), respectively.

4.2. Numerical and Simulation Results
4.2.1. Threshold and Pricing Comparison

The pricing and threshold comparisons are given in Fig. 1 and 2,
respectively. From Fig. 1, we can see that the pricing of the constant
model at b = 0 is slightly smaller than that of the aggressive model
for a small number of users and is almost the same pricing for a large
number of users. It can also be seen from Fig. 1 that the pricing for
the constant model increases with the value of b, which can also be
seen from (19). This is intuitively appealing since the users tend to
transmit when the waiting cost is high and the network operator has
to increase the price to discourage the users from transmission to re-
duce collisions.

From Fig. 2, we can see that the constant model has exactly the same
threshold as the aggressive model when both are based on through-
put optimization, which is % and does not vary with b. For revenue

ZNote that there may be some other definitions of c; satisfying the re-
quired properties.
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optimization, the threshold of the constant model varies slightly with
b and is only slightly different from the aggressive model.

4.2.2. Throughput and Revenue Comparison

Fig. 3 compares the throughput of the aggressive model and the con-
stant model. Under the throughput optimization framework, both
models have exactly the same throughput. This is due to fact that
the equilibrium threshold does not change with different models as
seen from (12) and Fig. 2. However, under the revenue optimization
framework, the constant model with b = 1 achieves higher through-
put than the aggressive model, but the latter gives a higher through-
put than the former with b = 0.

Fig. 4 compares the revenue of the aggressive model and the con-
stant model. The aggressive model has almost the same revenue as
constant model with b = 0. However, the constant model with b = 1
achieves much higher revenue than the aggressive model. The reason
is that the pricing of the constant model with b = 1 is much higher
than that of the aggressive model and the constant model with b = 0
(see Fig. 1).

4.2.3. Spectral Efficiency and Energy Consumption Comparison

To show the multiuser diversity gains, we will consider two perfor-
mance criteria: spectral efficiency and energy consumption.

1. Spectral Efficiency: Here, a continuous-rate adaptive modu-
lation is used by exploiting the instantaneous channel power
gains, and the spectral efficiency is calculated as

PG;
r = log,(1+ 702 ), @1

(3

where P is the transmission power, o2 is the noise power

and ~ is the SNR gap given by v = *m(slT‘;R)' Note that
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to show the effects of the channel gains on the number of bits
transmitted, P is considered fixed for all the users and is set
to be ‘1’ in the simulation.

2. Energy Consumption: From (21), we can calculate the power
P to achieve data rate r as follows:

pP=
G

(22)

In the simulation, we use the normalized data rate » = 1.

It can be seen from Figs. 5 and 6 that the constant model and the
aggressive model based on the throughput optimization have exactly
the same spectral efficiency and energy consumption since they have
the same equilibrium thresholds as shown in Fig. 2. Under the rev-
enue optimization framework, the spectral efficiencies achieved by
different models are almost the same. However, energy consump-
tion varies slightly with b. The energy consumption of the constant
model at b = 0 is less than that of the aggressive model, which is, in
turn, less than that of the constant model at b = 1. This is due to the
fact that the threshold (or transmission probability) of the constant
model at b = 0 is smaller than that of the aggressive model, which
is less than that of the constant model at b = 1 (see Fig. 2).
Another observation from Figs. 5 and 6 is that the channel aware
Aloha given in [4] (which is well known as a distributed scheme
achieving multiuser diversity gain) achieves almost the same spec-
tral efficiency as both constant model and aggressive model while it
consumes more energy than them based on the revenue optimization
framework. Note that spectral efficiency and energy consumption
are related to each other through (21) and (22), but the effect of mul-
tiuser diversity is more pronounced in the energy consumption.
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5. CONCLUSION

i B
120 140 160

In this paper, a generalized utility function for the waiting cost is
proposed. We have shown that different models have no impact on
the achieved throughput, spectral efficiency and energy consumption
under the throughput optimization while they do have slight effects
under the revenue optimization. Compared to the channel aware
Aloha in [4], our generalized utility function model achieves higher
multiuser diversity gain by deploying the pricing strategy even if all
the users act selfishly, and demonstrates flexibility in designing util-
ity functions associated with different QoS requirements, in order to
optimize the overall network performance.
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