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ABSTRACT

We analyze the asymptotic error performance of different re-
ceiver schemes based on block space–time codes over a fully
correlated Rician fading MIMO channel. The receivers differ
in the way they obtain the channel state information at the re-
ceiver (CSIR) required to detect the transmitted signal. The
baseline is a genie-aided receiver, which has perfect CSIR
knowledge without any power or rate expenditure. Alterna-
tively, a mismatched receiver extracts CSIR by pilot symbol
insertion and uses it in the perfect CSIR decision metric. Fi-
nally, an optimum receiver, avoiding direct CSIR detection,
estimates the transmitted data from the whole received sam-
ple and from the knowledge of pilot symbols. Key results are
the receiver diversity and asymptotic power gain.

Index Terms— Correlated Rician MIMO channels, Pilot-
aided receivers, Joint channel and data estimation.

1. INTRODUCTION

Early research studies on MIMO communications were based
on two key assumptions: rich scattering and perfect channel
state information at the receiver (CSIR) [2, 11]. Several sub-
sequent studies criticized the rich scattering assumption, lead-
ing to uncorrelated Rayleigh fading, by providing more real-
istic channel models [3,4]. Separately-correlated (Kronecker)
fading was proposed in [6] to give a better description of the
MIMO channel fading vagaries. It was shown that one of
the consequences of spatial correlation is the reduction of the
MIMO channel achievable rate. More refined channel models
were proposed in [7,12,13], deriving from physical and signal
processing motivations, often with a considerable impact on
the achievable rate. Though the precise choice of the channel
model is still controversial, all proposals are encompassed by
the fully correlated Rician fading channel. This model will be
the focus of the current study.
The impact of the second key assumption, perfect receive

CSIR, will also be addressed in this paper by considering
three receiver architectures which differ in the way they ob-
tain it for the purpose of signal detection.
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1. A baseline genie-aided receiver providing an error per-
formance lower bound, as this receiver obtains CSIR
from a genie without any power or rate expenditure.

2. A mismatched receiver, separating the channel and data
detection parts by first obtaining an imperfect estimate
of the CSIR through pilot-symbol channel estimation
and then using this estimate in the perfect CSIR detec-
tion metric (thus creating a mismatch).

3. An optimum receiver, implementing a joint channel and
data detection algorithm based on the knowledge of the
whole received sample (including data and pilot sym-
bols) and of the transmitted pilot symbols.

In a previous study [8] we derived the detection metrics
of these three receivers and provided an error performance
analysis based on the PEP. Here we build upon the earlier
analysis and obtain the following two novel results.

1. All receivers attain the same diversity order.

2. Analytic expressions of the asymptotic gain of the re-
ceivers considered. These derivations are made possi-
ble by a substantial simplification (with respect to [8])
of the PEP expressions.

2. SYSTEMMODEL

We consider a narrowband MIMO block fading channel with
nT transmit and nR receive antennas, characterized by the fol-
lowing matrix equation:

YnR×N = HnR×nT
XnT×N + ZnR×N . (1)

Here, X ∈ CnT×N is the transmitted signal matrix spanning
N symbol intervals,H ∈ CnR×nT is the channel matrix, Z ∈
CnR×N is the additive noise matrix, and Y ∈ CnR×N is the
received signal matrix. We assume that the entries ofZ are iid
Nc(0, N0) distributed. The channel matrixH is random with
circularly-symmetric complex Gaussian entries. Since we as-
sume a fully-correlatedRician fadingMIMO channel, its joint
pdf is given by vec(H) ∼ Nc(h̄,Σh) with h̄ � vec(H̄) and
Σh positive definite. The corresponding Rice factor is given
byK = ‖H̄‖2/ Tr(Σh).
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From linear algebra results [5] we obtain a vectorized ver-
sion of equation (1):

y = (XT ⊗ InR
)h + z. (2)

Here, we definedh � vec(H), y � vec(Y), and z � vec(Z).
The vectorized channel equation allows to obtain the exact
LMMSE estimate of the channel matrixH.
In the following, we consider encoded frames consist of

Np pilot matrices and Nd data matrices Xi ∈ CnT×N (i =
1, . . . , Np + Nd). Thus, pilot insertion reduces the effective
rate by the factor Np/(Np + Nd). Summarizing, we define
X̃p � (X1, . . . ,XNp

), X̃d � (XNp+1, . . . ,XNp+Nd
), X̃ �

(X̃p, X̃d), and related Y,Z matrices. For future reference,
we also define X̃ � X̃T ⊗ InR

, X̃ij � (X̃iX̃
H
j )∗ ⊗ InR

=

X̃
H

i X̃j , D̃ � X̃d1 − X̃d2 = Δ̃T

d ⊗ InR
. We also assume that

pilot matrices have orthogonal rows so that, defining the pilot
symbol energy as Ep � ‖X̃p‖2/(nTNp), we have

X̃pX̃
H

p = NpEpInT
. (3)

We define the SNR by assuming iid transmitted symbols with
zero mean and energy Es:

SNR �
E[‖H‖2]Es

nRN0
=

(‖H̄‖2 + Tr(Σh))Es

nRN0
.

Similarly, the received energy per bit will be given by

Eb =
E[‖H‖2](NdEs + NpEp)

Nb

where Nb is the number of information bits per code word.
We also define the bit rate as Rb � Nb/Nd bit/symbol and
the power efficiency as the fraction of energy devoted to data
transmission with respect to the total energy, due to data and
pilot symbol transmission as

η �
NdEs

NdEs + NpEp

=
γs

γs + γp

,

with γs � NdEs

N0

and γp �
NpEp

N0

. Hence we obtain

Eb

N0
=

E[‖H‖2]

ηRb

Es

N0
=⇒

Es

N0
=

ηRb

E[‖H‖2]

Eb

N0
.

Remark 2.1 In the following we study the system perfor-
mance as a function of the Eb/N0 ratio and of the power ef-
ficiency η. It is plain that if Es = Ep, then η coincides with
the uncoded system throughputNd/(Nd +Np). However, the
definition proposed allows for a more flexible interpretation
in terms of resource exploitation. For example, for a given
η, one can maximize the uncoded system throughput by set-
ting Np equal to its minimum value, nT (to comply with (3))
by setting Ep = (η−1 − 1)NdEs/nT, which can be consider-
ably larger than Es. The resulting transmitted signal becomes
more peaky with obvious disadvantages in terms of linearity
and pilot pollution (long-range interference).

3. RECEIVER ARCHITECTURES

As in [8], we consider a genie-aided, mismatched and opti-
mum receiver. The receiver output is given by

X̂d = argmin
X̃d

μ(X̃d | X̃p, Ỹ) (4)

with different decision metrics μ(X̃d | X̃p, Ỹ), characteriz-
ing the type of receiver. For the genie-aided receiver:

μ(X̃d | X̃p, Ỹ) = ‖Ỹd − HX̃d‖
2. (5)

For the ML/LMMSE mismatched receiver:

μ(X̃d | X̃p, Ỹ) = ‖Ỹd − ĤML/LMMSEX̃d‖
2 (6)

with
ĤML = ỸpX̃

H

p (X̃pX̃
H

p )−1 (7)

and, defining X̃p � X̃T
p ⊗ InR

andRh � h̄h̄H + Σh,

vec(ĤLMMSE) = (X̃
H

p X̃p + N0R
−1
h

)−1X̃
H

p vec(Ỹp). (8)

For the optimum receiver,

μ(X̃d | X̃p, Ỹ) = ln detΨ(X̃)− a(X̃)HΨ(X̃)−1a(X̃) (9)

where, setting X̃ � X̃T ⊗ InR
,{

a(X̃) � Σ−1
h

h̄ + X̃
H

vec(Ỹ)/N0

Ψ(X̃) � Σ−1
h

+ X̃
H

X̃
, (10)

after some simplification of the results in [8].

4. ERROR PERFORMANCE

The error performance is analyzed through the PEP P (X̃d1 →

X̃d2) = P (Δ < 0) for some properly defined random vari-
able Δ. The exact PEP (or an upper bound to it) can be de-
rived as summarized in [8, App. D]. The derivation is based
on themoment generating function (MGF)ΦΔ(s) = E[exp(−sΔ)].
Assuming that c is in the region of convergence of ΦΔ(s), we
have:

P (Δ < 0) =
1

j 2π

∫ c+j∞

c−j∞

ΦΔ(s)
ds

s
.

Summarizing and simplifying the results from [8], we can
write the MGF ΦΔ(s) for the three receivers considered as
follows:

ΦΔ(s) = Ks exp{−μ
HM(s)[N0I + Σ(s)M(s)]−1

μ}

det[I + Σ(s)M(s)/N0]
(11)

where K, μ,Σ(s),M(s) depend on the receiver considered.
For the genie-aided receiver, setting D̃ � (X̃d1−X̃d2)

T⊗InR
,

K = 1, μ = h̄, Σ(s) = Σh, M(s) = s(1 − s)D̃
H

D̃.
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For the ML/LMMSE mismatched receiver,K = 1, μ =
(
h̄

0

)
,

Σ(s) =

(
Σh 0

0 γ−1
p I

)
, M(s) =

(
M11(s) M12(s)

M21(s) M22(s)

)
,

withPML = InTnR
,PLMMSE = (InTnR

+ γ−1
p R−1

h
)−1, and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M11(s) = 2sH[(I− P)HX̃
H

d1D̃P] + s(1 − s)PHD̃
H

D̃P

M12(s) = M11(s) − sPHD̃
H

X̃d1

M21(s) = M11(s) − sX̃
H

d1D̃P

M22(s) = M11(s) − 2sH(X̃
H

d1D̃P)

For the optimum receiver,

K =
det(X̃11 + N0Σ

−1
h

)

det(X̃22 + N0Σ
−1
h

)
, μ =

(
X̃11 + N0Σ

−1
h

X̃21 + N0Σ
−1
h

)
h̄,

Σ(s) =

(
X̃11ΣhX̃11 + N0X̃11 X̃11ΣhX̃12 + N0X̃12

X̃21ΣhX̃11 + N0X̃21 X̃21ΣhX̃12 + N0X̃22

)
,

M(s) = s

(
(X̃11 + N0Σ

−1
h

)−1 0

0 −(X̃22 + N0Σ
−1
h

)−1

)
,

where X̃i � X̃∗
i ⊗ InR

and X̃ij � (X̃iX̃
H

j )∗.

5. ASYMPTOTIC PERFORMANCE

From MacLaurin’s expansion of the MGF,

ΦΔ(s; N0) =

∞∑
k=do

ΦΔ,k(s)Nk
0 , (12)

we obtain the diversity order do (lowest degree inN0) and the
corresponding coefficient

κ �
1

j 2π

∫ c+j∞

c−j∞

ΦΔ,do
(s)

ds

s

allows us to express the PEP as follows:

P (X̃d1 → X̃d2) = κN do

0 [1 + O(N0)].

The following theorem shows that the diversity order achieved
is the same by the three receivers considered and the corre-
sponding values of the coefficient κ are evaluated to provide
the relative asymptotic power gain/loss of the receivers.

Theorem 1 In the asymptotic SNR regime (N0 ↓ 0), the PEPs
of the genie-aided (G), mismatched (M), and optimum re-
ceivers (O) are given as follows:

P (X̃d1 → X̃d2) = κG/M/ON do

0 [1 + o(N0)] (13)

where do = nR rank(Δ̃d � X̃d1 − X̃d2) represents the di-
versity order of all three receivers and the constant κG/M/O

depends on the receiver considered and is given as follows.

• For the genie-aided receiver,

κG =

(
2do − 1

do

)
exp(−‖I

Λ̃G
ŨGΣ

−1/2
h

h̄‖2)

det+(D̃ΣhD̃
H

)

where ŨG and Λ̃G are unitary and diagonal matrices,
respectively, deriving from the orthogonal factorization
Σ

1/2
h

D̃
H

D̃Σ
1/2
h

= ŨH

GΛ̃GŨG. 1

• For both the ML and the LMMSEmismatched receivers,
κM can be obtained from

ΦΔ,do
(s) =

exp(−‖I
Λ̃M(s)ŨM(s)HΣ

−1/2
h

h̄‖2)

[s(1 − s)]dodet+(Λ̃G)

det

{
InTnR

−
s

1 − s

X̃
H

d1D̃(D̃
H

D̃)−1D̃X̃d1

NpEp

}−1

N do

0

where ŨM(s), Λ̃M(s) are obtained from the unitary fac-
torization

ŨM(s)HΛ̃M(s)ŨM(s) = Σ
1/2
h

{
M11(s) − M12(s)

·[NpEpInTnR
+ M22(s)]

−1M21(s)
}
Σ

1/2
h

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M11(s) = s(1 − s)D̃

H

D̃

M12(s) = s(1 − s)D̃
H

D̃ − sD̃
H

X̃d1

M21(s) = s(1 − s)D̃
H

D̃ − sX̃
H

d1D̃

M22(s) = s(1 − s)D̃
H

D̃ − 2sH(X̃
H

d1D̃)

.

• For the optimum receiver, under the mild assumption
that the code words X̃d1, X̃d2 have full row rank and
X̃1X̃

H
2 = NpEpInT

+ X̃d1X̃
H

d2 is not singular,

κO =

(
2do − 1

do

)
exp(−h̄HΣ−1

h
h̄)

det+

{
X̃11Σh[X̃22 − X̃21X̃

−1

11 X̃12]X̃
−1

22

} .

Proof omitted for space limitations see [9].
In the case of full diversity order do = nTnR, we have the

following result.

Corollary 1 With full rank Δ̃d and hence full diversity or-
der do = nTnR, the asymptotic power loss of the optimum
receiver with respect to the genie-aided is given by

λO =

(
det(D̃

H

D̃)

det
{

X̃11 − X̃12X̃
−1

22 X̃21

})1/do

. (14)

1IA is defined by (IA)ij = 0 if (A)ij = 0 and 1, otherwise.
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Remark 5.1 Theorem 1 suggests an alternative code design
criterion for optimum receivers, which is based on the max-
imization of a different determinant than the one suggested
in [10], namely, det

{
X̃11−X̃12X̃

−1

22 X̃21

}
. It is worth noting

that this design criterion holds regardless of the spatial corre-
lation of the MIMO Rician fading channel, provided that the
rank has already been maximized.

6. NUMERICAL RESULTS

We apply the results presented to the fully correlated Rician
fading MIMO channel with channel matrix

H = H̄ + R
1/2
1 Hw,1T

1/2
1 + R

1/2
2 Hw,2T

1/2
2 .

We assume that nT = 2, nR = 2, H̄ij = 1, (Rk)ij = α
|i−j|
k ,

(Tk)ij = β
|i−j|
k , for k = 1, 2, α1 = 0.1, α2 = 0.7, β1 = 0.7,

β2 = 0.1, and Hw,1,Hw,2 have iid Nc(0, 1) entries. Figure
1 shows the PEP corresponding to a pair of code words from
a space–time code obtained by concatenating a 4-state QPSK
trellis code with the Alamouti code. The code words are:
X1 = Alam(2, 1, 3, 1, 0, 1, 3, 1, 0, 1, 1, 0, 1, 3, 3, 1, 2, 0, 0, 0),
X2 = Alam(2, 1, 3, 3, 3, 3, 3, 1, 0, 1, 1, 0, 1, 3, 3, 1, 2, 0, 0, 0),
whereAlam(α1, . . . , αN ) =

(
s1 −s∗

2
... sN−1 −s∗

N

s2 +s∗
1
... sN +s∗

N−1

)
with sk �

exp(j (2αk + 1)π/4).
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2 rx antennas − 2x20 code words − η=0.90

genie−aided
ML mismatched
LMMSE mismatched
optimum

Fig. 1. Plot of P (X1 → X2) with power efficiency of 90%
and three types of receivers: genie-aided, ML and LMMSE mis-
matched, and optimum receiver (lines: analytic results; dots: simu-
lation; straight lines: asymptotic results).

Besides the analytic PEPs, the figure contains simulation
(dots) and asymptotic results (dots and straight lines, respec-
tively), which confirm the validity of Theorem 1. It is shown
that, with a 90% power efficiency, the asymptotic loss of the
optimum receiver to the genie-aided (1.0 dB) is considerably
smaller than that of the mismatched receivers (7.3 dB).

7. CONCLUSIONS
The focus of this work is the study of several receivers over
the fully correlated Rician fading MIMO channel. Build-
ing on earlier results [8], we derived the asymptotic PEP of
the mismatched, optimum, and genie-aided receivers. We
showed that all receivers attain the same diversity order and
we gave closed-formexpression of the asymptotic power gains.
A code design criterion is given in Corollary 1.
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