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ABSTRACT
We consider the problem of space-time block code (STBC) design
for Ricean fading channels in a multiple-input multiple-output
(MIMO) communication system equipped with a linear minimum
mean square error (MMSE) receiver. Two criteria, i.e., ergodic
channel capacity and mean square error (MSE) are used for the
design. Due to the complexity of the mathematics involved, no
general solution has yet been proposed for a Ricean channel with
arbitrary mean. In this paper, we present the necessary and suf cient
conditions for the design of the optimal precoder applicable to any
channel condition and any range of signal-to-noise ratio (SNR).
Simulations verify that the performance of the MIMO system using
the optimum precoder is indeed superior in performance.

Index Terms— MIMO, Ricean fading, channel capacity, MSE

I. INTRODUCTION

In MIMO communications, most research focus on STBC design
for Rayleigh fading channels which are assumed to be IID Gaussian
with zero mean. On the other hand, Ricean fading, being a more
general model than Rayleigh fading, has important applications in
wireless communications including the cases of having feedback
channel state information (CSI) at the transmitter, and having a
strong line of sight (LOS) path in the channels [1].
With Rayleigh fading, the STBC design problems can usually

be solved by the isotropic property possessed by the channel
fading coef cients. These design solutions include: 1) the optimal
input signal covariance that maximizing the ergodic channel ca-
pacity [2] and 2) the optimal STBC that minimizing the detection
error probability for a linear MMSE receiver [3]. However, for
Ricean channels, the isotropic property no longer holds due to
the arbitrary nonzero mean, resulting in dif culties to arrive at an
optimum STBC design. Still, useful results on STBC designs for
Rician fading channels in MIMO systems have been obtained: To
maximize the ergodic channel capacity, the covariance matrix of
the signal at the input to the Ricean channels has been considered,
e.g., [4], [5]. The eigenvectors of the optimal covariance have been
characterized [5]. However, no general close form solution on the
optimal eigenvalues has been obtained. Instead, by observing that
the objective is a concave function [6], two methods have been
proposed seeking the optimal eigen-values: i) numerical method
(e.g., [5]), and ii) maximizing an upper bound of the objective [4].
Nevertheless, method i) involves a huge amount of computation
since each step of the iterations necessitates the evaluation of the

expected value of a random function, and the upper bound derived
in Method ii) is a coarse approximation of the original problem. On
the other hand, there has been no explicit optimal STBC proposed
for the problem of transmitting the signals through Ricean fading
channels and received by a linear MMSE detector.
In this paper, we examine the problem of optimum STBC design

in a MIMO system for Ricean fading channels. We approach
the problem via two different criteria: 1) maximizing the ergodic
capacity of the virtual channel, which is the transformed channel
that contains both the original channel and the STBC, and 2)
minimizing the MSE for a MIMO system equipped with a linear
MMSE equalizer followed by a symbol-by-symbol detector. In
both cases, we arrived at the respective optimum designs. We rst
derive the necessary and suf cient conditions for the optimal code
in both cases. This is the rst time that the optimal conditions
are provided that describe how the transmission power should be
allocated accordingly to the Ricean factor and an arbitrary channel
mean. Based on the optimal conditions, we also unveil the channel
states under which these two criteria converge. To apply the optimal
conditions, we propose a close approximation for the complicated
nonlinear functions involved, which enables a fast computation of
the optimal code numerically.

II. SYSTEM MODEL
We consider a MIMO communication system withM transmitter

and N (N ≥ M ) receiver antennas. The channel fading between
the mth (m = 1, · · · , M ) transmitter and nth (n = 1, · · · , N )
receiver antenna is denoted by hnm. Each of these coef cients hnm

is assumed to be Gaussian having a non-zero mean, and together
they constitute an N ×M channel matrix H , which can be written
as

H =

√
1

K + 1
H0 +

√
K

K + 1
H̃ (1)

where K is the Ricean factor, H0 is the channel mean known at
the transmitter and it satis es tr

(
HH

0 H0

)
= MN , and H̃ is

a random matrix with i.i.d. Gaussian distributed elements of zero
mean and unit variance. The matrix H̃ remains constant for T

time slots and may change to other states after the time elapses. We
assume that only the statistical information of the random matrix H̃

is available at the transmitter, while the receiver has perfect channel
state information. For notation simplicity, we denote α =

√
1

K+1
,

and ᾱ =
√

K
K+1

in the remainder of the paper.
We transmit an MT × 1 signal vector s through the above-

mentioned MIMO system during T time slots, where each signal
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symbol is independently chosen from a constellation with zero
mean and unit variance, i.e.,

Y =

√
ρ

M
HX(s) + W (2)

where ρ is the signal-to-noise ratio (SNR) at each receiver, X(s)

is the coded transmitted signal matrix with dimension M × T , Y
is the N × T received signal matrix, and the M × T matrix W is
the additive white Gaussian noise with each element distributed as
CN (0, 1).
In this paper, we only consider linear STBC, i.e.,

X(s) = B

(
MT∑
i=1

C isi

)
(3)

where B is the M × M beamforming matrix, and C i (i =

1, · · · , MT ) is the coding matrix for the symbol si. Since the
channelH is composed of a deterministic partH0 and an isotropic
Gaussian random matrix H̃ , we can choose our coding strategy
such that we employ B to take advantage of the deterministic part
of the Ricean fading channel in the transmission of the signal, and
choose C i for optimally coding the signal in an isotopic random
channel. These parameters satisfy the following power constraints

tr
(
BBH

)
= M ;

MT∑
i=1

tr
(
C iC

H
i

)
= MT (4)

Now, the optimal linear STBC for an isotropic random channel
has been proved [3] to be of the unitary trace-orthogonal structure
de ned as

C iC
H
i =

1

M
I ; and tr

(
C iC

H
j

)
= δij (5)

Thus we can x the matricesC i to have these properties of Eqs. (5),
and focus the design effort on the beamforming matrix B. We
approach the design from the prospect of two criteria: i) maximizing
the ergodic channel capacity, and ii) minimizing the MSE at the
output of a linear MMSE receiver.
To facilitate the analysis, we vectorize Eq. (2), combined with

Eq. (3), and obtain

y =

√
ρ

M
(I ⊗ HB)F s + w (6)

where “ ⊗ ” denotes Kronecker product, y and w are the
vectorized received signal and noise, HB � HB, and F �
[vec (C1) , · · · , vec (CMT)]. From Eq. (5), it is obvious that F

is a unitary matrix. We are now ready to examine the design the
matrix B.

III. CHANNEL CAPACITY

In this section, we design the optimal beamforming matrix by
maximizing the ergodic channel capacity of the virtual channel,
which contains both the original channel and the STBC. The design
problem can be formulated as [2], [7]

max
B

: I1 = E
[
log det

(
I+

ρ

M
F H(I ⊗ HH

B )(I ⊗ HB)F
)]

(7)

subject to the power limits of Eq. (4), where “E” denotes ex-
pectation. Now, by employing matrix equality det(I + AB) =

det(I + BA) and noticing that F is unitary, I1 can be simpli ed
as

I1 = E
[
log det

(
I +

ρ

M
(I ⊗ HH

B HB)
)]

= TE
[
log det

(
I +

ρ

M
HQHH

)]
where Q � BBH with dimensionM×M . Then, the optimization
problem in Eq. (7) is equivalent to

max
Q

: I2 = E
[
log det

(
I +

ρ

M
HQHH

)]
(8a)

s.t. : tr (Q) = M (8b)

The formulation of the problem in Eq. (8) is parallel to that [4],
[5] which considered the optimization of the input covariance
matrix for uncoded signals. This is a dif cult problem since the
objective contains a non-linear function of the non-central Wishart-
distributed [8] random matrix HQHH . Attempts to solve the
problem have been made by: 1) Applying numerical method which
is possible since the objective is a concave function. However, both
the objective function and its gradient are expressed in terms of the
expectation of non-linear functions, no close forms of which are
available. Hence, each step of iteration has to involve the calculation
of the expectation resulting in very intensive computation. 2) In-
terchanging the order of the expectation operator with the function
log det in Eq. (8a), resulting in a deterministic upper bound on
I2. The optimal ΛQ that maximizes the upper bound is given by
the well known water- lling solution. Neither of these results is
satisfactory in obtaining the true optimum solution of the original
problem. In the following, we present our result in solving Eq. (8)
as a theorem:
Theorem 1: For a Ricean fading MIMO communication sys-

tem, when unitary trace-orthogonal code is employed, the ergodic
channel capacity of the coded channel is maximized if and only
if: 1) the eigenvector matrix of Q is equal to the right singular
vector matrix of the channel mean, and 2) the eigenvalue matrix
ΛQ of Q ensures equal diagonal elements in the matrix Φ �

E
(
ΛQ + M

ρ

(
(αΛ0 + ᾱH̃)H(αΛ0 + ᾱH̃)

)−1
)−1

where Λ0 is
the singular value of the channel mean.
Outline of Proof : a) We perform SVD on H0 such that H0 =

ULΛ0U
H
R , and using the isotropic property of H̃ , we can re-write

I2 as

I2 = E log det
(
I +

ρ

M
(αΛ0 + ᾱH̃)Q̄(αΛ0 + ᾱH̃)H

)
(9)

where Q̄ � UH
R QUR.

b) Making use of the concavity of the function log det(·), and
after some mathematical manipulations, an upper bound on I2 in
Eq. (9) is obtained such that:

I2 ≤ E log det
(
I +

ρ

M
(αΛ0 + ᾱH̃)ΛQ(αΛ0 + ᾱH̃)H

)
� IU (10)

where ΛQ � diag(diag(Q̄)). The equality holds if and only if Q̄

is a diagonal matrix, i.e., UR diagonalizes the matrix Q.
c) Applying the method of Lagrange multipliers on IU with the

power constraint, we arrive at the conclusion that IU is maximized
if and only if the matrix Φ has equal diagonal elements. �
Remark 1: Theorem 1 holds for any distribution of the channel

with a known mean. The result in Theorem 1 is a general condition
that covers several special cases.
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1) When K → ∞, the channel reduces to Rayleigh fading.
From the symmetry of matrix Φ, the optimal ΛQ must be
an identity matrix.

2) When K = 0, the channel becomes deterministic. The
condition that Φ has equal diagonal elements now reduces to
the condition ofΛQ+M

ρ
Λ−2

0 having equal diagonal elements.
The solution in this case is water- lling.

3) The term M
ρ

(
(αΛ0 + ᾱH̃)H(αΛ0 + ᾱH̃)

)−1

is negligible
compared with ΛQ at high SNR. Thus, it is obvious that the
optimal condition implies ΛQ is an identity matrix.

Remark 2: From the expression of Q̄ and the condition of
equality in Eq. (10), we conclude that the optimum eigenvector
matrix of Q is the right singular vector matrix of H0. This result
has been observed in [5].
Although Theorem 1 yields the condition for the optimum

beamformer, the matrix Φ governing this condition is still in the
form of the expectation over a random function. The dif culty in
calculating the expectation lies in that it needs twice the inverse
of a matrix involving a non-central Wishart random matrix. Now,
if we apply the matrix inverse lemma to the expression of Φ, we
obtain

Φ = Λ−1
Q −

Λ−1
Q E

{(
Λ−1

Q +
ρ

M
(αΛ0 + ᾱH̃)H(αΛ0 + ᾱH̃)

)−1
}

︸ ︷︷ ︸
�Ψ

Λ−1
Q

(11)

There is no ready solution for Ψ in Eq. (11) which involves the
expected inverse of a function containing a non-central Wishart
matrix. To evaluate Ψ, we will derive an approximate expression
for it by calculating the rst three terms of its Taylor expansion. The
following lemma is introduced here to facilitate the development
of the paper:
Lemma 1: For a noncentral Wishart distributed matrix [8]W ∼

Wm(n,Σ,Σ−1M HM ), and a constant matrix X , the expected
value of the matrix E(W + X)−1 is approximately given by

E(W + X)−1 ≈ Z−1
0 + Z−1

0

(
ΣZ−1

0 W 0 + M HMZ−1
0 Σ

+ (trZ−1
0 Σ)W 0 + (trMZ−1

0 M H)Σ
)
Z−1

0 (12)

with W 0 = EW , and Z0 = W 0 + X .
Remark: This lemma is an extension of [9].
Apply Lemma 1 on Ψ by letting Σ = ᾱ2I , M = αΛ0 and

X = Λ−1
Q , which are all diagonal, and we obtain

Ψ ≈ R−1
0 +

ᾱ2ρ

M
(2α2Λ2

0 + ᾱ2NI)R−3
0 +

ᾱ2ρ

M
(trR−1

0 )

(α2Λ2
0 + ᾱ2NI)R−2

0 +
α2ᾱ2ρ

M
(trR−1

0 Λ2
0)R

−2
0 (13)

where R0 = Λ−1
Q + ρ

M
E(αΛ0 + ᾱH̃)H(αΛ0 + ᾱH̃) = Λ−1

Q +
ρ
M

(
α2Λ2

0 + ᾱ2NI
)
. Here we observe that the rst term R−1

0

is obtained by interchanging the order of the expectation and
the matrix inverse in Ψ. Thus, if we interchange the order of
expectation with log det in Eq. (10), followed by applying the
expectation on the terms inside the brackets and maximizing the

result, this will yield R−1
0 for which the second and third order

information in Eq. (13) will be lost.
Substituting Eq. (13) into Eq. (11), we obtain the approximate

expression of Φ which involves higher order polynomials of
ΛQ. Since the matrices are all deterministic, it can be ef ciently
calculated numerically.

IV. MINIMIZATION OF MSE

We now consider the precoder design for Ricean channels in
a MIMO system equipped with an MMSE receiver. In this case,
the received signal y in Eq. (6) is processed by a linear MMSE
equalizer followed by a symbol-by-symbol detector. It is known
[10] that the MSE associated with the equalized signals is

ε̄2 = Etr
(
I +

ρ

M
F H(I ⊗ HB)H(I ⊗ HB)F

)−1

= TEtr
(
I +

ρ

M
HQHH

)−1

(14)

Hence, we seek to solve the following optimization problem:

min
Q

: Etr
(
I +

ρ

M
HQHH

)−1

(15)

subject to the same power constraint as shown in Eq. (8b). The
solution is provided by the following theorem:
Theorem 2: For a MIMO communication system with Ricean

fading channels, when the unitary trace-orthogonal STBC is em-
ployed, and the signals are received by a linear MMSE equalizer
followed by a symbol-by-symbol detector, the detection MSE is
minimized if and only if 1) The eigenvector matrix of Q is
the right singular value matrix of the channel mean, and 2) The
eigenvalue matrix of Q is the one that enables the matrix Ω �
ρ
M

EHH
Λ

(
I + ρ

M
HΛΛQHH

Λ

)−2
HΛ to have equal diagonal ele-

ments, where HΛ � Λ0 + H̃ .
Proof: Similar logic in developing Theorem 1 can be applied

here. �
Similar to Section III, the condition described in Theorem 2 is in

the form of the expectation of a random non-linear function which
needs to be calculated. However, here we observe that the matrix
Ω contains a second order matrix inverse making the calculation
even more complicated than that for Φ. In the following, we nd
an approximation for Ω in terms of the SNR ρ.
First, by applying matrix inverse lemma, and after some math-

ematical manipulations, the matrix Ω can be written as

Ω = 2Φ − Λ−2
Q Ψ + EΛ−1

Q

( ρ

M
HH

Λ HΛ + Λ−1
Q

)−1

Λ−2
Q

( ρ

M
HH

Λ HΛ + Λ−1
Q

)−1

(16)

The rst two terms in Eq. (16) concern with the matrices Φ andΨ.
From Eq. (11), we observe that while the SNR associated with these
two matrices are in the rst order of ρ, the third term contains the
second order. The higher is the SNR, the less impact the third them
has on the whole function Ω. The approximate expressions for the
rst two terms have already been obtained in Section III. Now, we
need to nd an approximation for the third term. We apply Taylor
expansion around R−2

0 Λ−3
Q resulting in a series of term containing

{ρ−2, ρ−3, · · · }. Ignoring the effects of ρ−3 and negatively higher
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order terms under moderately high SNR, we obtain the following
approximate expression of Ω,

Ω ≈ 2Φ − Λ−2
Q Ψ + R−2

0 Λ−3
Q (17)

All the matrices in Eq. (17) are now deterministic. By applying
Theorem 2, the optimalΛQ can be numerically computed. At lower
SNR, we may incorporate more terms in the series to compute
the value of Ω. The terms are still deterministic and presents no
problem in computation.

V. ERGODIC CAPACITY AND MSE
Theorem 1 and 2 provide us with the optimal conditions for the

beamforming matrix to achieve either the the maximum ergodic
channel capacity or the minimum MSE. In this section, we will
examine the conditions under which these two criteria yield the
same optimum code. The following corollary indicates the condi-
tions:
Corollary 1: For a MIMO system with Ricean fading channels,

maximizing ergodic channel capacity and minimizing MSE results
in the same optimal code if and only if the channel mean matrix
has equal eigenvalues (including zeros).
Outline of proof: a) After some manipulations, the matrix Ω can
be written as:

Ω = Φ + E

(
M

ρ
(HH

Λ HΛ)−1 + ΛQ

)−2

ΛQ (18)

b) For maximization of ergodic capacity, Φ must have equal
diagonal elements. For minimization of MSE, Ω must also have
equal diagonal elements. Substituting the expression of HΛ and
comparing both sides of Eq. (18), the conclusion that the channel
mean has equal eigenvalues can be reached. �

VI. SIMULATION
We consider a MIMO system with M = N = T = 2, where

the channel has the mean H0 =

(
0.5620 0.1873

0.3746 1.8731

)
, and Ricean

factor K = 0.5. The input signals are randomly chosen from
a 4-QAM constellation and coded with unitary trace-orthogonal
code and the beamforming matrix is obtained numerically by
applying Theorem 2 and Eq. (17). At the receiver, the signals
are processed by a linear MMSE equalizer followed by a symbol-
by-symbol detector. The bit-error-rate (BER) performance under
different SNR is plotted in Fig. 1. We also simulate two cases
where the signals are processed through the same system except
with different beamformers: 1) B = I and 2) B is obtained
by minimizing the lower bound resulted from interchanging the
expectation with tr(·)−1 in Eq. (15) so that the expectation applies
directly to the random channel matrix term inside the bracket. The
superior performance of the proposed optimum beamformer can be
clearly observed.

VII. CONCLUSION
In this paper, we have examined the problem of optimum

precoder designs for MIMO systems under Ricean fading. We have
approached the problem using two different criteria and presented
the necessary and suf cient conditions for optimum precoders to
satisfy them. To apply the optimal conditions, we expanded the
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Fig. 1. BER performance comparisons.

expectation of the non-linear functions into their deterministic
Taylor series and approximated them by choosing the dominant
terms. From these, the STBC can be obtained ef ciently. The
accuracy of the aprroximate solution can be increased by including
more higher order terms.
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