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ABSTRACT
This paper analyzes the performance of adaptive antenna
arrays employing linear combining techniques designed to
maximize the SINR. In the communications literature, these
systems are referred to as optimum combining (OC) systems.
We consider the practical case where the desired signal
undergoes Rician fading, and is corrupted by Rayleigh-faded
interfering signals and noise. We first propose new closed-
form Gamma approximations for the SINR distribution at
the output of the OC combiner, which we show to be re-
markably accurate. We then employ these approximations to
derive new closed-form expressions for the ergodic capacity
and simplified expressions for the high-SNR regime. These
results reveal that the capacity improves monotonically with
Rician K-factor.

Index Terms—Signal processing antennas, adaptive arrays,
land mobile radio cellular systems, cochannel interference,
interference suppression

I. INTRODUCTION
Adaptive antenna arrays employing linear combining tech-

niques provide an effective means of detecting a desired
signal in the presence of interference and noise. In the com-
munications literature, where adaptive arrays are commonly
employed at the receiver side, the optimum linear combining
strategy in terms of maximizing the signal-to-interference
and noise ratio (SINR) is referred to as optimum combining
(OC) [1].

Recently, the performance of OC systems has been studied
under various assumptions on the channel propagation envi-
ronment. In particular, when both the desired signal and the
interfering signals exhibit Rayleigh fading, hereafter referred
to as a Rayleigh-Rayleigh scenario, the performance of OC
systems has been well-investigated. For this case, results are
now available for the symbol error rate (SER) with various
digital modulation formats, and the SINR probability density
function (p.d.f.), cumulative distribution function (c.d.f.), and
moment generating function (m.g.f.).

In practice, however, the desired signal often has a line-
of-sight (LoS) component, in which case modeling the
corresponding channel as Rician fading is more appropriate.
The presence of LoS has been confirmed through phys-
ical measurements for a number of applications, such as
micro-cellular mobile and indoor radio [2]. In contrast to
the Rayleigh case, there are few performance results for

OC systems where the desired signal has Rician fading.
Moreover, of the results which are available, most restrict
the number of interfering signals to be less than the number
of antennas in the adaptive array and employ a simplified
interference-limited model [2], where the effect of thermal
noise is ignored. Only recently have some results been pre-
sented in [3, 4] which are not restricted to the interference-
limited model and allow for arbitrary number of interferers
and receive antennas. In that work, exact expressions were
obtained for the SINR m.g.f. and the SER with M -PSK
modulation (although these were not in closed-form), and
for the SINR moments. The p.d.f. and c.d.f. of the SINR,
however, still remain unknown.

In this paper, we consider OC systems where the desired
signal has LoS, but the interferers do not, which we refer
to as the Rician-Rayleigh scenario. We propose new closed-
form Gamma approximations for the SINR p.d.f. and c.d.f.
which we show to be remarkably accurate. Based on these
new SINR statistical results, we derive expressions for the
ergodic capacity of Rician-Rayleigh OC systems, as well as
simplified expressions in the high SNR regime. These results
reveal that LoS improves the ergodic capacity.

II. SYSTEM MODEL
We consider a system where the desired signal is corrupted

by L interfering signals and thermal noise, and the receiver
is equipped with an Nr-element antenna array. The received
Nr × 1 complex baseband signal vector is expressed as

z =
√

EDh0x0 +
L∑

j=1

√
EIhjxj + n (1)

where ED and EI are the average transmit power from the
desired and interferer signals respectively, h0 and hj are
the Nr × 1 flat-fading channel vectors for the desired and
jth interferer (j = 1 . . . L) signals respectively, and n is
an Nr × 1 additive white gaussian noise (AWGN) vector
containing independent entries ∼ CN (0, N0). Also, x0 and
xj are the desired and interfering data symbols respectively,
modeled as zero mean random variables with unit variance.
We assume that h0 and hj (j = 1 . . . L) are known at the
receiver.

The receiver optimally combines the output from the Nr

receive antennas, which results in a SINR given by [1]

γSINR = γSNRh†
0R

−1h0 (2)
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where γSNR = ED

N0
is the average transmit SNR, R = INr +

γINRHIH
†
I , γINR = EI

N0
is the average interference-to-noise

ratio (INR) and HI = [h1,h2, ...,hL].
We consider the case where the desired signal is subject

to Rician fading and the interferer signals are subject to
Rayleigh fading. The distribution of h0 is thus given by

h0 ∼ CNNr,1

(√
K

K + 1
m,

1
K + 1

INr

)
(3)

where m is the channel mean vector, normalized to satisfy
‖m‖2 = Nr, and K is the Rician K-factor. In addition, the
Rayleigh interference channels are distributed according to

HI ∼ CNNR,L(0Nr×L, INr
⊗ IL) . (4)

III. NEW ACCURATE APPROXIMATIONS FOR
THE DISTRIBUTION OF THE SINR

The distribution of the SINR in (2) is particularly difficult
to analyze since it is a random function of both the non-
central complex normal vector h0 and the random matrix
R; and analytical expressions for the p.d.f. and c.d.f. are
not forthcoming. Our approach is to approximate the SINR
p.d.f. and c.d.f. as a Gamma random variable.

Our motivation for considering a Gamma distribution is
that it has been shown previously to yield a good approx-
imation (or exact fit in some scenarios) for a number of
cases related to the SINR model in (2). These include among
others, models with (i) Rayleigh-faded R and Rayleigh-
faded h0 [5–7], (ii) R = INr (ie. no interference case) and
Rayleigh-faded h0 [8], and (iii) R = INr

and Rician-faded
h0 with Nr = 1 (ie. scalar Rician fading) [9].

Here we present a closed-form Gamma approximation for
the SINR model in (2) for the Rician-Rayleigh scenario.
Our numerical results will demonstrate this simple approx-
imation exhibits very good accuracy over a wide range of
Rician-Rayleigh channel conditions, and therefore presents
a valuable analytical tool for system performance analysis.

A Gamma distribution, in its most general form, has c.d.f.
FY (·) and p.d.f. fY (·) given by

FY (y) =
γ

(
k, y

θ

)
Γ(k)

, fY (y) =
yk−1e−

y
θ

Γ(k)θk
(5)

with mean kθ and variance kθ2, where θ ∈ R is the scale
parameter and k ∈ R is the shape parameter. We obtain
our new closed-form Gamma approximation for the SINR
distribution by matching the Gamma mean and variance
(thereby determining the scale and shape parameters also)
with the Rician-Rayleigh SINR mean and variance. This is
given in [3, Eq. 25], and after algebraic manipulation can be
expressed as

E[γSINR] = γSNRϑ1 (6)

Var[γSINR] = γ2
SNR

((
1 − (K/(K + 1))2

(Nr + 1)

)
ϑ2 − ϑ2

1

)
(7)

where

ϑ� =
μRay−Ray

�

γ�
SNR

(8)

and μRay−Ray
� is the �th SINR moment in the Rayleigh-

Rayleigh case given by [3, Eq. 26]. Thus, the scale parameter
for our SINR Gamma approximation is evaluated as

θSINR(K) = γSNRθINR(K) (9)

with

θINR(K) =
(

1 − (K/(K + 1))2

(Nr + 1)

)
ϑ2

ϑ1
− ϑ1 , (10)

and the shape parameter as

kINR(K) =
ϑ2

1(
1 − (K/(K+1))2

(Nr+1)

)
ϑ2 − ϑ2

1

. (11)

Our desired analytical Rician-Rayleigh SINR c.d.f. and p.d.f.
approximations are now directly obtained by making the fol-
lowing substitutions into (5): θ = θSINR(K), k = kINR(K),
and y = γ.

Fig. 1 presents a comparison of the Gamma-approximated
SINR c.d.f. curves with Monte Carlo simulated c.d.f. curves
considering different numbers of interferers. We see a very
accurate match between our new analytical Gamma ap-
proximation and the true SINR c.d.f. Moreover, the outage
probability is seen to degrade significantly as the number of
interferers increase.
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Fig. 1. C.d.f. of the SINR of Rician-Rayleigh OC systems;
comparison of analytical Gamma approximation and Monte
Carlo simulated c.d.f.s for different numbers of interferers
L. Nr = 5, K = 7dB, and γSNR = γINR = 5dB.

Fig. 2 compares Gamma-approximated SINR p.d.f. curves
with Monte-Carlo simulated p.d.f. curves for different num-
bers of interferers. We see an accurate match between our
new analytical Gamma approximation and the true SINR
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p.d.f. Note that both our p.d.f. and c.d.f. approximations are
accurate for other system configurations, but are not shown
due to space limitations.
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Fig. 2. P.d.f. of the SINR of Rician-Rayleigh OC systems;
comparison of analytical Gamma approximation and Monte
Carlo simulated p.d.f.s for different numbers of interferers
L. Nr = 5, K = 7dB, and γSNR = γINR = 5dB.

Note that the Gamma distribution has the same form as the
Nakagami-m fading distribution, for which various results
are available in the literature. Thus, by employing these
prior results, we can easily obtain new simple closed-form
approximations for various performance measures of interest
to Rician-Rayleigh OC systems, which would not otherwise
be possible via exact methods. We will demonstrate this in
the following section when considering ergodic capacity.

IV. ERGODIC CAPACITY ANALYSIS OF
RICIAN-RAYLEIGH OC SYSTEMS

We now utilize our new Gamma approximated SINR
distributions proposed in the previous section to analyze the
ergodic capacity of Rician-Rayleigh OC systems, which is
given by

C(γSNR) = EX [log2(1 + γSNRX)] (12)

where X = h†
0R

−1h0. Due to the difficulty in obtaining
exact expressions for the SINR p.d.f. and c.d.f. (equivalently
X), exact ergodic capacity solutions are not forthcoming. By
employing the closed-form Gamma approximation presented
in Section III however, we will see that very accurate closed-
form capacity approximations are possible for the entire
range of SNR levels. To gain further insights, we also
investigate the ergodic capacity in the high SNR regime.

IV-A. Accurate Capacity Approximation Based on
Gamma Distribution

Substituting our closed-form SINR Gamma approximation
given by (5), (9), and (11) into the expectation (12), inte-

grating using Nakagami-m results from [10] and applying
[11, Eq. 9.31.5] and [11, Eq. 9.34.8], leads to

C(γSNR) ≈ log2 e θINR(K)kINR(K)γSNR

× 3F1([kINR(K) + 1, 1, 1]; 2;−θINR(K)γSNR) (13)

where ·F·(·; ·; ·) is a hypergeometric function.

The accuracy of (13) is shown in Fig. 3, where it is
compared with Monte Carlo simulated results for different
numbers of interferers. In all cases, the difference between
the capacity curves for the Gamma approximation and the
Monte Carlo simulated curves is almost negligible.
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Fig. 3. Ergodic capacity of Rician-Rayleigh OC systems;
comparison of analytical Gamma approximation, analytical
high SNR Gamma approximation, and Monte Carlo simu-
lated capacity for different numbers of interferers L. Results
are shown for Nr = 5, K = 5dB, and γINR = 5dB.

IV-B. High SNR Analysis
At high SNR, the ergodic capacity (12) takes the general

form [12]

C(γSNR) = S∞

(
γSNR

∣∣
dB

3 dB
− L∞

)
+ o(1) (14)

where S∞ denotes the high-SNR slope in bits/s/Hz/(3 dB)
given by

S∞
Δ= lim

γSNR→∞
C(γSNR)

log2(γSNR)
(15)

and L∞ is the high SNR power offset (3 dB units) given by

L∞
Δ= lim

γSNR→∞

(
log2(γSNR) − C(γSNR)

S∞

)
. (16)

For Rician-Rayleigh OC systems, we again use our
Gamma SINR distribution approximations proposed in the
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previous section to accurately approximate S∞ and L∞
respectively as follows

S∞ ≈ 1 (17)

L∞ ≈ − log2(θINR(K)) − ψ(kINR(K)) log2 e (18)

where ψ(·) is the digamma function, and θINR(·) and kINR(·)
are defined in (10) and (11) respectively. The proof is omitted
due to space limitations.

The accuracy of this result is confirmed in Fig. 3, where
we compare the high SNR capacity approximation obtained
by combining (14), (17) and (18) with the Monte Carlo sim-
ulated ergodic capacity for different numbers of interferers.
We see that in all cases there is almost negligible error
between the capacity approximation curves and the exact
(simulated) capacity curves in the high SNR regime.

It is interesting to note that the Rician K-factor affects the
high SNR power offset L∞, but not the capacity slope S∞.
Indeed, in the Appendix we prove that L∞ is a decreasing
function of K; thereby demonstrating that LoS improves the
ergodic capacity in the high SNR regime.

APPENDIX

We start by taking the derivative of L∞ w.r.t. K, which
after some algebraic manipulation results in

dL∞
dK

=
log2 e2K/(K+1)3

(Nr+1) ϑ2(
1 − (K/(K+1))2

(Nr+1)

)
ϑ2 − ϑ2

1

(19)

×

⎛
⎜⎜⎜⎜⎝1 −

ϑ2
1ψ

(
1,

ϑ2
1(

1− (K/(K+1))2
(Nr+1)

)
ϑ2−ϑ2

1

)
(
1 − (K/(K+1))2

(Nr+1)

)
ϑ2 − ϑ2

1

⎞
⎟⎟⎟⎟⎠ (20)

where θINR(K) and kINR(K) are given in (10) and (11)
respectively and ψ(·, ·) is the polygamma function [11].
Since (19) is always positive, to prove L∞ is a decreasing
function of K, we are therefore required to show that

1 − ϕψ(1, ϕ) ≤ 0 → ψ(1, ϕ) − 1
ϕ

≥ 0 (21)

where ϕ ∈ R+ is the second argument of the polygamma
function in (20). To proceed, we first consider the case when
0 ≤ ϕ ≤ 1. By replacing ψ(1, ϕ) in (21) with its series
expansion, we obtain the following equivalent condition

∞∑
p=0

1
(p + ϕ)2

− 1
ϕ

=
1
ϕ2

− 1
ϕ

+
∞∑

p=1

1
(p + ϕ)2

≥ 0 (22)

which clearly holds when 0 ≤ ϕ ≤ 1. Now consider the case
when ϕ > 1. We first lower bound ψ(1, ϕ) in (21) using [13,
Theorem 2.1] which gives us, after algebraic manipulation,
the following sufficient condition for which the inequality in
(21) holds

1 +
1
ϕ2

− e−
1
ϕ − 1

ϕ
=

1
ϕ2

+
1

2ϕ2
− 1

3!ϕ3
+

1
4!ϕ4

+ · · · ≥ 0

(23)

It is clear that (23) will converge to a positive value when
ϕ > 1, hence the condition in (23) always holds for ϕ > 1.
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