
Distributed Adaptive Quantization for Wireless Sensor
Networks: A Maximum Likelihood Approach

Jun Fang and Hongbin Li
Department of Electrical and Computer Engineering
Stevens Institute of Technology, Hoboken, NJ 07030
Emails: {Jun.Fang, Hongbin.Li@stevens.edu}

Abstract—We consider the problem of distributed parameter
estimation in wireless sensor networks (WSNs), where due to
bandwidth/power constraints, each sensor quantizes its local ob-
servation into one bit of information that is sent to a fusion center
(FC) to form a global estimate. Conventional xed quantization
(FQ) approaches, which utilize a xed threshold for all sensors,
incurs an estimation error growing exponentially with the differ-
ence between the threshold and the unknown parameter to be
estimated. To overcome this dif culty, we propose a distributed
adaptive quantization (AQ) approach, where, under the condition
that sensors successively broadcast their quantized data, each
sensor adaptively adjusts its quantization threshold using prior
transmissions from other sensors. Speci cally, our strategy here
is to let each sensor choose its quantization threshold as the
maximum likelihood (ML) estimate of the unknown parameter
based on the quantized data sent from other sensors. The
Cramér-Rao bound (CRB) analysis shows that our proposed one-
bit AQ approach asymptotically attains an estimation variance
that is only π/2 times that of the clairvoyant sample-mean
estimator using unquantized observations.

Index Terms—Adaptive quantization, distributed estimation,
wireless sensor networks.

I. INTRODUCTION
Wireless sensor networks (WSNs) have attracted much

attention over the past few years. Consisting of a large number
of small, low-cost sensors with integrated sensing, processing,
and communication abilities, WSNs can accomplish a variety
of tasks including environment monitoring, battle eld surveil-
lance, target localization and tracking, and many more [1],
[2]. Bandwidth and power constraints are two primary issues
that need to be addressed in WSNs, as limited communication
bandwidth is shared across the entire network and, meanwhile,
the sensors are often powered by irreplaceable batteries. As
such, a major challenge of the WSN research is to design
bandwidth and power ef cient signal processing techniques.
In this paper, we consider distributed estimation of an

unknown deterministic parameter in a bandwidth and power
constrained WSN. Suppose we have N spatially distributed
sensors, with each sensor making a noisy observation of an
unknown parameter θ

xn = θ + wn, n = 1, 2, . . . , N, (1)

where wn denotes additive Gaussian observation noise with
zero mean and variance σ2

w, and the noise is assumed inde-
pendent and identically distributed (i.i.d.) with respect to n.
Due to limited bandwidth and power constraints, all sensors
quantize their observations {xn} into one-bit binary data {bn}

and send the quantized data to the fusion center (FC). The
problem of interest is to estimate θ from the quantized data
{bn} received at the FC.
Conventional xed quantization (FQ) approach employs a

common quantization threshold for all sensors [3], [4]. The
optimum choice of τ , however, is identical to θ which is
unknown. It is also found that if τ is set away from θ,
the best achievable estimation performance at the FC has an
estimation error exponentially increasing with |τ − θ|/σw. An
alternative strategy is to use a set of thresholds {τk}, and
each τk is used in a fraction ρk of the N sensors [4], in the
hope that some of the thresholds are close to the unknown
θ. However, to nd solutions of {τk, ρk}, a prior probability
distribution of θ is required. Recently, an adaptive quantization
(AQ) approach with step size was introduced in [5].
The proposed scheme [5] is in essence a distributed Delta
modulation technique, whereby the threshold of sensor n, τn,
is obtained as the previous threshold τn−1 plus or minus a
xed increment (step size) Δ. It is shown that the AQ scheme
[5] demonstrates a certain extent of robustness to the unknown
parameter θ and presents a performance advantage over the FQ
approach.
In this paper, we present an AQ approach with

step size. Speci cally, each sensor computes the maximum
likelihood (ML) estimate of the unknown parameter based on
the previous transmissions as its quantization threshold. As
compared with [5], the proposed AQ approach with variable
step size presents a stronger robustness to the unknown param-
eter θ. Also, our algorithm is shown to asymptotically have
the same estimation variance as that of the FQ approach with
an optimum choice of threshold, i.e. τ = θ. This indicates that
our AQ scheme adaptively nds the best threshold by learning
from transmission from previous sensors.
The rest of the paper is organized as follows. We rst brie y

review the FQ approach [4] in Section II. The AQ approach
with variable step size and the corresponding MLE and CRB
are presented in Section III. Numerical results, comparisons,
and discussions are contained in Section IV.

II. FIXED QUANTIZATION APPROACH

The xed quantization approach is to apply a common
threshold τ for all sensors and generate quantized data bn as
follows [3]:

bn = sgn(xn − τ), n = 1, 2, . . . , N, (2)
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which are sent to the FC. The probability mass function (PMF)
of the binary random variable bn is given by

P (bn; θ) = [Fw(τ − θ)](1+bn)/2[1−Fw(τ − θ)](1−bn)/2, (3)

where Fw(x) denotes the complementary cumulative density
function (CCDF) of wn. Since {bn} are i.i.d., the log-PMF or
log-likelihood function is

LFQ(θ) � ln[P (b1, . . . , bN ; θ)]

=

N∑
n=1

{(
1 + bn

2

)
ln[Fw(τ − θ)]

+

(
1− bn

2

)
ln[1− Fw(τ − θ)]

}
, (4)

where the subscript FQ is used to denote xed quantization.
The MLE is given by [4]

θ̂FQ = arg max
θ

LFQ(θ)

=τ − F−1

(
1

N

N∑
n=1

1 + bn

2

)
. (5)

The CRB based on the above xed quantization is ( [3], [4]):

CRBFQ(θ) =
Fw(τ − θ)[1− Fw(τ − θ)]

Np2
w(τ − θ)

, (6)

where pw(x) denotes the probability density function (PDF)
of wn. Using the Chernoff bound, it can be easily shown [4]
that the CRB increases exponentially with |τ − θ|/σw .

III. ADAPTIVE QUANTIZATION APPROACH

We assume that the sensors broadcast their quantized data
sequentially, i.e. sensor 1 transmits rst, followed by sensor
2, and so on and so forth. The sensor’s quantization threshold
is computed as the ML estimate of the unknown parameter
θ based on previous transmissions. Firstly, we use τ1 = 0 to
generate b1:

b1 = sgn{x1}. (7)

After receiving b1, sensor 2 computes τ2 = Δb1, where Δ is
chosen to be large enough such that Δ � |θ|. In doing this
way, we can guarantee that b2 = sgn{x2− τ2} has a different
sign from b1, i.e. b1 = −b2. Based on the received {b1, b2}
and the pre-speci ed Δ, sensor 3 computes τ3 as

τ3 = θ̂ = arg max
θ

L3(θ)

= arg max
θ

log P (b1, b2; θ)

= arg max
θ

log P (b1|τ1; θ)P (b2|τ2; θ)

= arg max
θ

2∑
k=1

{(
1 + bk

2

)
ln[Fw(τk − θ)]

+

(
1− bk

2

)
ln[1− Fw(τk − θ)]

}
, (8)

and generates b3 = sgn{x3 − τ3}. Note that if b1 and b2 have
the same sign, the ML estimate θ̂ goes to plus or minus in nity.
This is the reason that we generate different signs of b1, b2.

For the Gaussian noise wn, it can be readily shown that the
above and the following MLE cost functions are concave [4].
Therefore, a gradient-based iterative algorithm is guaranteed
to converge to the global maximum.
In general, for sensor n, it rst recovers the previous

thresholds {τ1, τ2, . . . , τn−1} from the received quantized data
{b1, b2, . . . , bn−1}, which can be computed straightforwardly
by recursive calculation:

τ1 = 0

τ2 = Δb1

τ3 = arg max
θ

L3(θ; b1, b2, τ1, τ2)

...
τn−1 = arg max

θ
Ln−1(θ; b1, . . . , bn−2, τ1, . . . , τn−2), (9)

where

Ln−1(θ) = log P (b1, . . . , bn−2; θ)

= log

n−2∏
k=1

P (bk|τk; θ)

=

n−2∑
k=1

{(
1 + bk

2

)
ln[Fw(τk − θ)]

+

(
1− bk

2

)
ln[1− Fw(τk − θ)]

}
. (10)

After obtaining {τ1, τ2, . . . , τn−1}, sensor n computes its
current threshold τn as

τn = arg max
θ

Ln(θ)

= arg max
θ

log P (b1, . . . , bn−1; θ)

= arg max
θ

log

n−1∏
k=1

P (bk|τk; θ)

= arg max
θ

n−1∑
k=1

{(
1 + bk

2

)
ln[Fw(τk − θ)]

+

(
1− bk

2

)
ln[1− Fw(τk − θ)]

}
, (11)

and generates bn = sgn{xn − τn}.
Similarly, the ML estimator at the FC to nd the nal

estimate of θ from the received quantized data {b1, b2, . . . , bN}
is given by

θ̂ = arg max
θ

LAQ(θ)

= arg max
θ

log P (b1, . . . , bN ; θ)

= arg max
θ

log

N∏
k=1

P (bk|τk; θ)

= arg max
θ

N∑
k=1

{(
1 + bk

2

)
ln[Fw(τk − θ)]

+

(
1− bk

2

)
ln[1− Fw(τk − θ)]

}
, (12)

where the thresholds {τ1, . . . , τN} can be recovered from the
quantized data {b1, b2, . . . , bN−1} in a recursive way as in (9).
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We analyze the performance of the proposed ML estimator
of θ in (12). Noting that F ′w(x) �

∂Fw(x)
∂x = −pw(x), we can

quickly verify that the second-order derivatives of LAQ(θ) are

∂2LAQ(θ)

∂θ2

=

N∑
n=1

{(
1 + bn

2

)(
− p′w(τn − θ)

Fw(τn − θ)
− p2

w(τn − θ)

F 2
w(τn − θ)

)

−
(

1− bn

2

)(
− p′w(τn − θ)[

1− Fw(τn − θ)
]

+
p2

w(τn − θ)[
1− Fw(τn − θ)

]2
)}

�

N∑
n=1

A(bn, τn, θ), (13)

where p′w(x) �
∂pw(x)

∂x . The Fisher information for the
estimation problem is given by (e.g., [6])

JAQ(θ) =− E

{
∂2LAQ(θ)

∂θ2

}

=−
N∑

n=1

Ebn,τn
{A(bn, τn, θ)}, (14)

where Ebn,τn
denotes the expectation with respect to the joint

distribution of bn and τn. Since

P (bn, τn; θ) = P (τn; θ)P (bn|τn; θ), (15)

we can write

JAQ(θ) =−
N∑

n=1

Eτn

{
Ebn|τn

[A(bn, τn, θ)]
}

(a)
=

N∑
n=1

Eτn

[
p2

w(τn − θ)

Fw(τn − θ)(1− Fw(τn − θ))

]

(b)
=

N∑
n=1

∫
P (τn; θ)G(τn; θ)dτn (16)

where Eτn
denotes the expectation with respect to the distri-

bution P (τn; θ), Ebn|τn
denotes the expectation with respect

to the conditional distribution P (bn|τn; θ), (a) follows from
the fact that bn is a binary random variable with P (bn =
1|τn, θ) = Fw(τn−θ) and P (bn = −1|τn, θ) = 1−Fw(τn−θ),
and we de ne G(τn; θ) �

p2

w
(τn−θ)

Fw(τn−θ)(1−Fw(τn−θ)) in (b).
To compute the exact Fisher information (16), we need

determine the distribution of {τn}, i.e. {P (τn; θ)}. However,
for our AQ approach, the number of possible thresholds
increases exponentially with n, speci cally, sensor n has
2n−1 possible thresholds with each threshold chosen with a
certain probability. Hence the exact computation of P (τn; θ)
is cumbersome, especially when the number of sensors, N , is
large. Instead, we examine the asymptotic performance of our
proposed AQ approach. We have the following results.

For the Gaussian noise wn with zero-mean
and variance σ2

w, the performance of the proposed AQ ap-
proach converges to the following as N →∞

CRBAQ(θ) → πσ2
w

2N
≈ 1.57

σ2
w

N
(17)

See Appendix A.
From (17), we see that the estimation variance of our proposed
AQ approach increases only by a factor of π/2 with respect
to the clairvoyant estimator [6] that relies on
observations. Note that the above estimation variance πσ2

w

2N is
also achieved by the FQ approach with an optimum choice of
threshold τ = θ [4]. This indicates that our AQ scheme adap-
tively nds the best threshold by learning from transmission
from previous sensors.

IV. NUMERICAL RESULTS
We illustrate the performance of our proposed AQ approach.

The noise {wn} are i.i.d. Gaussian random variables with zero
mean and variance σ2

w = 1. We set θ = 20. We compare
our AQ scheme (named as “AQ-VS”) with the clairvoyant
estimator [6] using unquantized data, the FQ approach [4],
with the common threshold τ set to be 16 and 20 respectively,
and the AQ approach with xed step size [5] (named as “AQ-
FS”), where the step size is set to be Δ = 5.
Fig. 1 shows the CRBs of the above approaches (note that

to compute the CRB of the proposed AQ approach, we collect
a number of realizations and nd out its approximate pdf
P (τn; θ)). For FQ approach, τ = θ is the optimum choice,
when τ = θ = 20, the performance of FQ achieves the best
among those one-bit rate-constrained estimators. However, as
we can see from the gure, the FQ approach is very sensitive
to the value of τ ; as the threshold τ become more apart from
θ (even not too far apart), the performance of the FQ degrades
signi cantly. Since θ to be estimated is unknown, the choice of
τ is always a tricky problem. Our proposed AQ approach does
not have the above problem. Its performance approaches that
of FQ with optimum threshold (τ = θ) while without knowing
the true θ. This illustrates the effectiveness of our proposed
approach and corroborates our previous claim in Proposition 1.
Furthermore, we also observe that the proposed AQ approach
with variable step size yields an additional performance gain
as compared with the AQ approach with xed step size.

APPENDIX A
PROOF OF PROPOSITION 1

Note that sensor m computes its threshold τm as

τm = arg max
θ

Lm(θ)

= arg max
θ

log P (b1, . . . , bm−1; θ)

= arg max
θ

m−1∑
k=1

{(
1 + bk

2

)
ln[Fw(τk − θ)]

+

(
1− bk

2

)
ln[1− Fw(τk − θ)]

}
(18)
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It can be easily veri ed that log P (b1, . . . , bm−1; θ) satis es
the “regularity” conditions. Hence, for large data records, i.e.
m is large, the ML estimate τm is consistent and asymptoti-
cally distributed according to τm ∼ N (θ, J−1

m (θ)) [6], where
Jm(θ) is the corresponding Fisher information. Consequently,
for any small ε > 0 and ε > 0, we can nd a suf ciently large
m such that

P (|τn − θ| < ε) > 1− ε n ≥ m (19)

Considering (16), we express JAQ(θ) as the summation of the
following two terms

JAQ(θ) =

m−1∑
n=1

∫
P (τn; θ)G(τn; θ)dτn

+

N∑
n=m

∫
P (τn; θ)G(τn; θ)dτn (20)

where m is chosen to satisfy (19). Noting that the function
G(τn; θ) is unimodal, positive, symmetric and achieves its
maximum when τn = θ, the rst term and the second term of
(20) can then be bounded as follows, respectively

J1(θ) �

m−1∑
n=1

∫
P (τn; θ)G(τn; θ)dτn

<

m−1∑
n=1

G(τn = θ; θ) =
2(m− 1)

πσ2
w

(21)

J2(θ) �

N∑
n=m

∫
P (τn; θ)G(τn; θ)dτn

=
N∑

n=m

[ ∫
P (|τn − θ| < ε)G(τn; θ)dτn

+

∫
P (|τn − θ| ≥ ε)G(τn; θ)dτn

]

>

N∑
n=m

∫
P (|τn − θ| < ε)G(τn; θ)dτn

>
N∑

n=m

(1− ε)G(τn = θ − ε; θ)

(a)
> (N −m + 1)(1− ε)

4√
2πσw

pw(ε)

(b)
>(N −m + 1)

2

πσ2
w

(1− ε)

(
1− ε2

2σ2
w

)
(22)

where (a) comes from the Chernoff bound: Fw(x)(1 −
Fw(x)) ≤ 1

4e
− x

2

2σ
2
w , (b) follows from the Taylor expansion.

Since 2(m−1)
πσ2

w

> J1(θ) > 0, we can further write

J1(θ) =
2(m− 1)η

πσ2
w

(23)

where 0 < η < 1. Combining (20–23), we therefore have

JAQ(θ) > (N −m + 1)
2

πσ2
w

ξ +
2(m− 1)η

πσ2
w

=
2Nξ

πσ2
w

− 2(m− 1)η′

πσ2
w

(24)
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Fig. 1. CRBs of the respective approaches versus the number of sensors N .

where ξ � (1− ε)
(
1− ε2

2σ2
w

)
and 1 > η′ � ξ − η. The CRB

is upper bounded by

CRBAQ(θ) =
1

JAQ(θ)

<
πσ2

w

2

1

Nξ − (m− 1)η′

=
πσ2

w

2N

1

ξ − (m−1)η′

N

(25)

Considering N → ∞, we have ξ → 1 and (m−1)η′

N → 0,
hence

CRBAQ(θ) → πσ2
w

2N
≈ 1.57

σ2
w

N
(26)

The proof is completed here.
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