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Abstract—We consider distributed estimation of a random
vector parameter by a wireless sensor network (WSN). To meet
stringent power and bandwidth budgets in WSN, local data
compression is performed at each sensor to reduce the number
of messages sent to a fusion center (FC). Under the constraint
of a given total number of messages, our problem is to jointly
determine the number of messages sent by each senor (a.k.a.
dimension assignment) and design the corresponding compression
matrix. The problem is formulated as a constrained optimization
problem that minimizes the estimation mean-square error (MSE)
at the FC. We analyze the problem using a subspace projection
technique, which yields an ef cient iterative solution. Numerical
results are presented to illustrate the effectiveness of the proposed
algorithm.

Index Terms—Distributed estimation, joint dimension assign-
ment and compression, wireless sensor network (WSN).

I. INTRODUCTION
The problem of distributed estimation in wireless sensor

networks (WSNs) has been of signi cant interest over the
past few years. Due to limited power and communication
bandwidth, some previous works (e.g., [1]–[4]) consider dis-
tributed estimation using aggressively quantized versions of
the original observations. In this setup, quantization becomes
an integral part of the estimation process and is critical to
the estimation performance. Another category of methods
(e.g., [5]–[9]), not relying on the above low-rate quantiza-
tion strategy, follow an optimal decentralized compression-
estimation approach to reduce the transmission requirement. In
these methods, the data dimensionality is reduced before each
sensor sends its data to a fusion center (FC). Upon receiving
the compressed data, the FC combines them according to
some fusion criterion to obtain a nal estimate. The crux of
these techniques is to design the compression matrix so as to
minimize the estimation mean-square error (MSE), which has
been extensively investigated by [5]–[9] under different fusion
criterions and noise correlation scenarios. These techniques,
however, require knowledge of the compression dimension
associated with each sensor a priori. For the inhomogeneous
environments, sensors at different locations may have dis-
similar observation qualities, and it is necessary to turn off
sensors with low-quality observations or use an aggressive
compression dimension for these sensors. In this case, the
above methods are limited since they require to set the
compression dimension for each sensor, which is a tricky
problem in practice. Hence, a data compression solution with
automatic dimension allocation is desirable.

In this paper, we study joint compression dimension al-
location and linear compression design under a bandwidth
constraint. The bandwidth constraint is measured by the total
number of real-valued messages (each message is a one-
dimensional unquantized data sample) sent to the FC, or,
equivalently, the sum of the total compression dimensions.
We develop an ef cient iterative algorithm that provides us
an effective solution to the joint design problem. The pro-
posed algorithm, unlike [5]–[9], can jointly determine the
compression dimension and the corresponding compression
matrix associated with each sensor. It, therefore, offers not
only more exibility but also a performance advantage over
existing methods for distributed estimation in inhomogeneous
environments.
We adopt the following notations throughout this paper. The

notation [·]T stands for matrix transpose. E[·] represents the
mathematical expectation. Also, we use tr(X) to represent the
trace operation of matrix X, R(X) and N(X) to indicate the
range (column) space and null space of matrixX, respectively.
The symbol In represents the identity matrix of size n × n.
R

n×m denotes the set of n × m matrices with real entries.

II. PROBLEM FORMULATION

Consider a WSN consisting of N spatially distributed
sensors, each sensor makes a noisy observation of the unknown
vector parameter θ ∈ R

p×1 (e.g., [7]):

xn = Hnθ + wn, n = 1, . . . , N, (1)

where Hn ∈ R
qn×p is the known observation matrix de ning

the input/output relation, xn ∈ R
qn×1 and wn ∈ R

qn×1 de-
note vector observation and noise, respectively. The unknown
parameter θ and the noise {wn} are assumed statistically
independent of each other, with zero-mean and covariance
matrices Rθ � E[θθ

T ] and Rw � E[wwT ], respectively,
where w � [wT

1 ,wT
2 , . . . ,wT

N ]T . We assume that there is no
inter-sensor communication and the channel links between the
sensors and the FC are ideal, i.e. noiseless. We also assume the
knowledge of the covariance matricesRθ andRw at the FC. In
practice, they can be estimated from the sensors measurements
in the absence/presence of signal (e.g., [5]). Note that in this
paper, for simplicity, we only con ne ourselves to the linear
data model (1) and ideal channel scenarios. Dimensionality
reduction under complicated scenarios like nonlinear data
model and non-ideal channel links was studied in [9].
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Let x � [xT
1 ,xT

2 , . . . ,xT
N ]T , and H �

[HT
1 ,HT

2 , . . . ,HT
N ]T . We can rewrite (1) in a more compact

form as

x = Hθ + w, (2)

where H ∈ R
q×p, x ∈ R

q×1, w ∈ R
q×1, and q �

∑N

n=1 qn.
If the FC has access to all sensors data, the linear unbiased
minimum variance (LUMV) estimate for θ is known as (e.g.,
[5], [7])

θ̂ = RθxR
−1
x x, (3)

with the estimation covariance matrix of θ̂ given by

E[(θ − θ̂)(θ − θ̂)T ] = Rθ − RθxR
−1
x RT

θx, (4)

where Rθx � E[θxT ] = RθH
T and Rx � E[xxT ] =

HRθH
T +Rw. Also, Rx is assumed to be a positive-de nite

matrix with arbitrary spatial correlation (in some works, e.g.
[7], Rx can be positive semi-de nite). Although (3) gives the
best estimate, this scheme requires sending all sensors data
to the FC, which may be impractical for WSNs with stringent
power and bandwidth budgets. A feasible solution is to reduce
the transmission requirement through local data dimensionality
reduction (also called “compression”). Due to the information
redundancy arising from spatial correlation, this scheme is
able to bring signi cant bandwidth savings while providing
an acceptable estimation accuracy.
Since the compression dimension associated with each

sensor is unknown and has to be determined, the previous
works [5]–[9] are no longer applicable. To cope with such a
situation, we introduce the following compression strategy to
accommodate the unknown compression dimensions

z = Sx = SHθ + Sw, (5)

where

S �

⎡
⎢⎢⎢⎣

c1,k1
Ek1

c2,k2
Ek2

...
cl,kl

Ekl

⎤
⎥⎥⎥⎦ , (6)

is an l × q full row rank compression matrix, and l � q is
the pre-speci ed total number of messages to be sent to the
FC. Eki

∈ R
qki

×q, a selection matrix used to select sensor
kthi ’s data, is a sub-matrix consisting of rows r̄1 thru r̄2 of Iq,
where r̄1 �

∑ki−1
n=1 qn + 1, r̄2 �

∑ki

n=1 qn. That is, Eki
is

given by

Eki
�

[
0qki

×q1
. . . Iqki

. . . 0qki
×qN

]
. (7)

ci,ki
∈ R

1×qki is a row vector which is used to linearly
compress the selected sensor’s data into a message.
We see that (6) provides a exible framework to model the

compression matrix with unknown compression dimensions
because every row of S is free to choose any sensor. If
multiple rows of S, say tn rows, select the same sensor n,
it is equivalent to reducing sensor n’s data dimensionality qn

to tn; if no row corresponds to a certain sensor, this sensor is
not selected.

Using the compressed data z, the LUMV estimate of θ

and its estimation covariance matrix are given as follows,
respectively

θ̂ = RθxS
T (SRxS

T )−1Sx, (8)

E[(θ − θ̂)(θ − θ̂)T ] = Rθ − RθxS
T (SRxS

T )−1SRT
θx.

(9)
Naturally, we may wish to nd an optimal compression matrix
S to minimize the estimation mean-square error (MSE). That
is,

max
S

tr
(
RθxS

T (SRxS
T )−1SRT

θx

)
. (10)

We next study the optimization problem (10).

III. PROPOSED APPROACH
Because of the structure shown in (6), the optimization

problem (10) is equivalent to determining the sensor in-
dices {ki}

l
i=1 and the corresponding compression vectors

{ci,ki
}l

i=1. Joint searching over the l sensor indices and the
corresponding compression vectors, however, is practically
infeasible since it involves a complexity that grows exponential
with l. An alternative way, like in [9], is to simplify the
problem by reducing the number of optimization variables.
Speci cally, we study how to determine the kth row of S

when the remaining (l − 1) rows are xed, through which
we can develop an ef cient iterative algorithm to search for
an effective, albeit suboptimal, solution.
Let Rx = QQT , where Q ∈ R

q×q can be obtained through
eigenvalue decomposition (EVD) or Cholesky factorization.
We can rewrite the cost function in (10) as

tr
(
RθxS

T (SRxS
T )−1SRT

θx

)
(a)
= tr

(
RθxQ

−T QT
s (QsQ

T
s )−1QsQ

−1RT
θx

)
(b)
= tr

(
RθxQ

−TT [Qs]
TT [Qs]Q

−1RT
θx

)
(c)
= tr

(
T [Qs]GT [Qs]

T
)
, (11)

where Qs � SQ in (a); in (b), T [X] is used to represent
a matrix transformation that transforms the rows of the full
row rank matrix X into an orthonomal basis, i.e. we nd
a nonsingular matrix A such that T [X] � AX admits:
(T [X])(T [X])T = I; (c) follows from the de nition G �

Q−1RT
θxRθxQ

−T . Without loss of generality, we discuss the
determination of the rst row of S, supposing that its last
(l − 1) rows are given. We write

Qs = SQ �

[
Qs,1

Qs,2

]
=

[
c1,k1

Q[r1:r2]

Qs,2

]
, (12)

where Qs,1 = c1,k1
Q[r1:r2] and Qs,2 denote the rst row and

the last (l − 1) rows of Qs, respectively, Q[r1:r2] is a sub-
matrix consisting of rows r1 thru r2 of Q, in which r1 =∑k1−1

n=1 qn +1 and r2 =
∑k1

n=1 qn. We note that r1 and r2 are
functions of the sensor index k1. Combining (10–12), hence
the optimization becomes

max
k1,c1,k1

tr

(
T

[[
c1,k1

Q[r1:r2]

Qs,2

]]
GT

[[
c1,k1

Q[r1:r2]

Qs,2

]]T
)

.

(13)
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Note that the matrix transformation T [·] in (13) is not unique
since if T [X] = AX satis es (T [X])(T [X])T = I, then
T [X] = UAX also works for any orthogonal matrixU, and it
makes no difference to the cost function. Our goal is to seek
one transformation that decouples the optimization variable
from the invariables. This can be accomplished by using a
subspace projection technique as described next.
We construct the orthogonal projection onto R(QT

s,2) and
N(Qs,2), respectively, as

P = QT
s,2(Qs,2Q

T
s,2)

−1Qs,2, (14)

P⊥ = Iq − QT
s,2(Qs,2Q

T
s,2)

−1Qs,2. (15)

Then, we have the following result.
Proposition 1: For any full row rank matrix Qs given in

(12), its matrix transformation T [Qs] can be written as

T

[[
c1,k1

Q[r1:r2]

Qs,2

]]
=

[
γk1

(P⊥QT
[r1:r2]

cT
1,k1

)T

T [Qs,2]

]
, (16)

where

γk1
�

1

c1,k1
Q[r1:r2]P

⊥P⊥QT
[r1:r2]

cT
1,k1

, (17)

is a scalar normalizing the vector (P⊥QT
[r1:r2]

cT
1,k1

), and
T [Qs,2] represents any matrix transformation that transforms
the rows of Qs,2 into an orthonormal basis.

Proof: See Appendix A.
Observe that (16) has successfully separated the optimization
variable from the invariable as we desired. By utilizing Propo-
sition 1, the optimization (13) can therefore be re-expressed
as

max
k1,c1,k1

(
γ2

k1
c1,k1

Q[r1:r2]P
⊥GP⊥QT

[r1:r2]
cT
1,k1

)

+ tr
(
T [Qs,2]GT [Qs,2]

T
)
, (18)

where the second term is independent of k1 and c1,k1
and

thus can be ignored. The above optimization can be further
reduced to a one-dimensional search by replacing c1,k1

with
its optimum c∗1,k1

for every possible k1. Given a speci ed k1,
the optimum c∗1,k1

is determined by

max
c1,k1

(
γ2

k1
c1,k1

Q[r1:r2]P
⊥GP⊥QT

[r1:r2]
cT
1,k1

)
. (19)

We now discuss how to solve (19). Notice that for a speci ed
k1, Q[r1:r2] is xed, and γk1

c1,k1
Q[r1:r2]P

⊥ is a unit-norm
vector which is a linear combination of the rows of Λ �

Q[r1:r2]P
⊥. Let Λ � UDVT denote the reduced singular

value decomposition, where U ∈ R
qk1

×r, D ∈ R
r×r, and

V ∈ R
q×r, r ≤ qk1

is the rank of Λ. Thus we can write

γk1
c1,k1

Λ = γk1
c1,k1

UDVT � cVT , (20)

where c � γk1
c1,k1

UD is an r-dimensional row vector of
unit norm, i.e. ‖c‖ = 1. Therefore (19) is equivalent to

max
‖c‖=1

(
cVT GVcT

)
, (21)

where the row vector c can be obtained as the eigenvector
associated with the largest eigenvalue. Let γk1

= 1, c∗1,k1
can

be easily solved from

c∗1,k1
UD = c. (22)

(22) admits an unique exact solution when r = qk1
and

numerous exact solutions when r < qk1
. For the latter case,

we can pick any one of the solutions. After obtaining c∗1,k1

for each k1 ∈ {1, . . . , N}, k1 is nally determined as

max
k1

(
c∗1,k1

Q[r1:r2]P
⊥GP⊥QT

[r1:r2]
(c∗1,k1

)T
)

. (23)

From the above discussion, we see that through the decou-
pling transform of Proposition 1, the optimization (13) can be
solved via (21)–(23). This effectively establishes an iterative
algorithm by successively optimizing and replacing each row
of S. The algorithm is summarized as follows
1) Randomly generate a selection matrix S(0) as an initial-
ization.

2) At iteration i+1 (i = 0, 1, . . .): via (21)–(23), determine
S

(i+1)
[1] given: {S(i)

[2] , . . . ,S
(i)
[l] }; determine S

(i+1)
[k] given:

{S
(i+1)
[1] , . . . ,S

(i+1)
[k−1],S

(i)
[k+1], . . . ,S

(i)
[l] } for k = 2, . . . , l.

Here we use S[k] to denote the kth row of S.
3) Go to Step 2 if |f(S(i+1)) − f(S(i))| > ε, where

f(·) denotes the cost function de ned in (10), ε is a
prescribed tolerance value; otherwise stop.

Clearly, in this algorithm, every iteration results in a non-
decreasing cost function value. Although not guaranteed to
converge to the global maximum, this algorithm converges
to a stationary point and provides us a practical compression
matrix design.

IV. NUMERICAL RESULTS
We present numerical results to illustrate the estimation

performance of the proposed algorithm. In our simulations, we
set N = 5, p = 5, and qn = 7 for any n ∈ {1, . . . , N}. The
observation matrices {Hn} are randomly generated with its
elements independently chosen as Gaussian random variables
with zero mean and variance σ2

s . To simulate an inhomoge-
neous environment with varying signal-to-noise ratio (SNR),
we let σ2

s = 0.1 for three sensors and σ2
s = 1 for the rest of

two sensors. Also, the signal and noise covariance matrices
are chosen to be Rθ = Ip and Rw = 0.1Iq , respectively. Note
that the sensors’ observations are still spatially correlated with
covariance matrix Rx = HRθH

T + Rw.
We compare our proposed method with the non-

compression scheme and the method [8] which requires the
compression dimensions to be set a priori. For the setup
considered herein, the methods of [5], [9] yield similar per-
formance as that of [8] and are thus omitted. The non-
compression scheme uses all sensors data with its estimation
covariance matrix given by (4), which provides a benchmark
(lower bound) on the achievable performance of all rate-
constrained methods. For [8], we examine the case where the
compression dimensions assigned to all sensors are identical.
Fig. 1 shows the mean-square error (MSE) of the three
schemes as a function of the number of messages sent to the
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Fig. 1. MSEs versus the total number of messages l sent by all sensors.

FC, l. The results are averaged over 200Monte Carlo runs, and
the observation matrices {Hn} are independently generated
for each run. In Fig. 1, the three points on the curve of the
method [8] correspond to (t1, t2, t3, t4, t5) = (1, 1, 1, 1, 1),
(t1, t2, t3, t4, t5) = (2, 2, 2, 2, 2), and (t1, t2, t3, t4, t5) =
(3, 3, 3, 3, 3), respectively, where tn denotes the compression
dimension associated with sensor n. From Fig. 1, we see that
our proposed method has a performance advantage over the
method [8] with identical compression dimension assignment.
The performance gain is primarily due to the fact that our
scheme is able to make more ef cient use of the total com-
pression dimensions l by taking into account sensor disparity.
In particular, it automatically assigns more dimensions to
sensors with high-quality observations than to noisier sensors.
For example, the dimension assignments obtained from one
realization by our proposed method are as follows: l = 5:
(t1, t2, t3, t4, t5) = (0, 0, 0, 3, 2), l = 10: (t1, t2, t3, t4, t5) =
(0, 0, 0, 5, 5), l = 15: (t1, t2, t3, t4, t5) = (1, 1, 1, 6, 6). We
also observe that, for a moderate l, our proposed algorithm
attains an estimation accuracy comparable to that of the non-
compression scheme. Notice that for the non-compression
scheme, a total number of q = 35 messages are sent to the
FC. Hence a considerable bandwidth savings is achieved by
our proposed method.

V. CONCLUSION
The problem of distributed parameter estimation is studied

in this paper. In order to meet the bandwidth constraint in
wireless sensor networks, each sensor compresses its data
before transmitting it to the fusion center. We developed an
ef cient iterative algorithm that jointly determine the com-
pression dimension and the corresponding compression matrix
associated with each sensor. Simulation results show that our
proposed algorithm can effectively capture the observation
quality difference across the sensors and provide ef cient
dimension assignment. Also, it can achieve a considerable
bandwidth savings at a small performance degradation as
compared with the non-compression scheme.

APPENDIX A
PROOF OF PROPOSITION 1

To prove (16), we need to show that the rows of the matrix
on the right hand side of (16) is an orthonormal basis for the
row space of Qs. For notational convenience, let

T �

[
γk1

(P⊥QT
[r1:r2]

cT
1,k1

)T

T [Qs,2]

]
.

We, rstly, verify that the rows of T are normalized or-
thogonal vectors. Since Qs,2P

⊥b = 0 for any b ∈
R

q×1, we have Qs,2P
⊥QT

[r1:r2]
= 0 and consequently

T [Qs,2]P
⊥QT

[r1:r2]
cT
1,k1

= 0. Therefore we have

TTT = Il. (24)

We now show that Qs and T have the same row space. To this
end, we demonstrate that every row of Qs can be represented
by a linear combination of the rows of T, and vice versa. Since
we can write T [Qs,2] = AQs,2, where A ∈ R

(l−1)×(l−1) is
an invertible matrix, we only need to examine the rst row of
the respective matrices. We have

(c1,k1
Q[r1:r2])

T = P⊥(c1,k1
Q[r1:r2])

T + P(c1,k1
Q[r1:r2])

T ,

(25)

and further we write

c1,k1
Q[r1:r2] =(P⊥QT

[r1:r2]
cT
1,k1

)T + c1,k1
Q[r1:r2]P

T

=(P⊥QT
[r1:r2]

cT
1,k1

)T

+ c1,k1
Q[r1:r2]Q

T
s,2(Qs,2Q

T
s,2)

−1Qs,2

(a)
=(P⊥QT

[r1:r2]
cT
1,k1

)T + aTT [Qs,2], (26)

where aT � c1,k1
Q[r1:r2]Q

T
s,2(Qs,2Q

T
s,2)

−1A−1 in (a). From
(26) we observe that c1,k1

Q[r1:r2] and (P⊥QT
[r1:r2]

cT
1,k1

)T are
linear combinations of the rows of the matrices T and Qs,
respectively. The proof is completed here.
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