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ABSTRACT

Kalman filtering is a classical technique with a number of potential
distributed applications in sensor networks. In this paper we con-
sider a specific algorithm for distributed Kalman filtering proposed
recently by Olfati-Saber [1]. We design a communication access pro-
tocol for wireless sensor networks that is tailored to converge rapidly
to the desired estimate and provides scalable error performance as
number of sensors increases. By exploiting the structure of the dis-
tributed filtering computations, we derive an optimal communication
resource allocation policy for minimizing the component-wise state
estimation error. We provide simulation results demonstrating the
performance of our architecture.

Index Terms— Kalman filtering, distributed algorithms, aver-
age consensus.

1. INTRODUCTION AND SYSTEMMODEL

A fundamental problem in sensor networks is distributed detection
and estimation. A practical solution can have a great impact in sup-
porting distributed monitoring operations and control of dynamical
systems. One of the most computationally efficient and mathemat-
ically elegant algorithms for the state estimation of dynamical sys-
tems, in a centralized setting, is the Kalman filter. There are several
works in literature that propose decentralized versions of the Kalman
filter [2, 3, 4, 5].

Recently, [1] proposed a promising algorithm for distributed
Kalman filtering (DKF) using average consensus. More specifically,
consider a linear dynamical system with the following state-space
model-

xk+1 = Akxk + Bkwk (1)

where xk ∈ R
m is the system state at time step k, wk is Gaussian

noise such that E{wkw
T
l } = Gkδ[k − l], and Ak, Bk are known

matrices ∈ R
m×m. We assume that Ak is such that the norm of

xk remains within a pre-specified range ∀k. The problem objective
is that each node i in a network of n nodes should estimate, in a
distributed fashion, the state x̂k.

Each node i makes noisy observations of the state- z
i
k =

Hi
kxk + v

i
k, whereHi

k is a known matrix ∈ R
p×m , vi

k is Gaussian
noise with E{vi

kv
iT
l } = Ri

kδ[k − l] and E{vi
kv

jT
k } = Ri

kδ[i− j],
and z

i
k ∈ R

p, p ≤ m. For simplicity, in the remainder of the paper
we will focus on the case where Hi and Ri are time invariant.

In [1] it was shown that:
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Theorem 1.1 Let yi
k = (Hi)T (Ri)−1zi

k. If the two following
quantities are available at all nodes:

yk =
1

n

n�

i=1

y
i
k , S =

1

n

n�

i=1

(Hi)T (Ri)−1Hi,

then each node can compute its state estimate x̂k|k through the fol-
lowing local micro Kalman filter (μ-KF) iterations -

Mk = ((nPk|k−1)
−1 + S)−1 (2)

x̂k|k = x̂k|k−1 + Mk(yk − Sx̂k|k−1) (3)

Pk+1|k = AkMkAT
k + Bk(nGk)BT

k (4)
x̂k+1|k = Akx̂k|k (5)

where x̂1|0 = x0, P0 = Im.

To distribute yk and S, [1] proposed replacing yk and S respectively
with the ith node estimates ŷk(i) and Ŝ(i) obtained with low-pass
and high-pass average consensus filters (see [1] for more details).
We denote the state estimates obtained this way by x̂k|k(i).

While Theorem 1.1 [1], provides the basic decomposition
needed for solving the state estimation problem via network gos-
siping, a few problems stand in the way of the practical application
of this algorithm: (1) more often than not in practical problems
the observations and/or the state vector evolve based on non linear
dynamics; (2) the work lacks a good physical model for the network
communications, which are assumed to be instantaneous, perfectly
synchronized and with infinite precision. This is clearly impossible
in the bandwidth and energy constrained environment of a wireless
sensor network. While the extension to non linear observers is left
for future work, the gap we fill here is dealing with the communi-
cation problem. We propose a more realistic modeling and efficient
implementation of the average consensus gossiping to support the
DKF, based on our recent study on multiple access for wireless
average consensus [6].

2. PROPOSED APPROACH

First, we modify the algorithm slightly to allow for an optimized
communication resource allocation. Since the matrix S is assumed
to be constant, we compute Ŝ(i) before hand and with much higher
accuracy, and assume in the following that Ŝ(i) ≈ S. We note in
equation (3) that the error made on the term (ŷk(i) − Sx̂k|k−1) is
filtered through the symmetric matrix Mk. Because of symmetry,
the eigenvalue decomposition Mk = UkΛkUT

k , where Uk is some
unitary matrix and Λk = diag(λ1

k, . . . , λm
k ), exists.
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Rather than computing an estimate of yk, our state updates are:

x̂k|k(i) = x̂k|k−1(i) + UkΛk(θk(t, i)−UT
k Sx̂k|k−1(i)) (6)

x̂k+1|k(i) = Akx̂k|k(i), (7)

where θk(t, i) is obtained through the iterative average consen-
sus protocol explained next, initialized with the state θk(0, i) =
UT

k (Hi)T (Ri)−1zi
k. For t � 1 this provides an estimate of:

θk =
1

n

n�

i=1

UT
k (Hi)T (Ri)−1

z
i
k (8)

with an error ek(t, i) that is a function of the transmission resources:

θk(t, i) = θk + ek(t, i). (9)

The reason for our change in (6) is that the error added due to the
communication constraints has independent entries in addition to
being independent with respect to k (c.f. Section 3.1). Let the addi-
tional error incurred by computing (6) instead of the μ-KF be called:

vk|k(i) = x̂k|k − x̂k|k(i) , vk|k−1(i) = x̂k|k−1 − x̂k|k−1(i).

It is not difficult to see that vk|k−1(i) = Ak−1vk−1|k−1(i) and that
the error injected into the μ-KF estimate is such that:

E{||vk|k(i)||2} = E{||(I −MkS)Ak−1vk−1|k−1(i)||
2}

+ E{||Λkek(t, i)||2}. (10)

Our next objective is to indicate how to compute θk(t, i) and how to
minimize the average error term 1

n

�n
i=1

E{||Λkek(t, i)||2} under
the communication constraints.

3. THE COMMUNICATION PROTOCOL

In this section we discuss the communication protocol that supports
the acquisition of θk(t, i). The estimation of S is done in an analo-
gous fashion, by performing a similar protocol on all the upper diag-
onal entries (main diagonal included) of the matrix, using the upper
diagonal of Si(0) = (Hi)T (Ri)−1Hi as the initial state.

Given a network with a symmetric adjacency matrix whose el-
ements are aij(t) ≥ 0 ∀i, j, and aij(t) > 0 iff nodes i and j are
neighbors, the canonical update for a infinite precision synchronous
discrete time average consensus protocol is:

θk(t + 1, i) = θk(t, i) +
n�

j=1

aij(t)(θk(t, j)− θk(t, i)), (11)

where the update term uk(t, i) =
�n

j=1
aij(t)(θk(t, j)− θk(t, i))

is obtained with near-neighbor communications. Define the matrix

{W (t)}ij = δij −
n�

j′=1

aij′(t) + aij(t). (12)

With initial states θk(0, i) = UT
k (Hi)T (Ri)−1

z
i
k, the convergence

θk(t, i) → θk in (8) is guaranteed iffW (t)1 = 1, 1T W (t) = 1T ,
and spectral radius ρ(W (t) − J) < 1 where with J = 1

n
11

T .
For simplicity, in the following we will assume W (t) = W to be
constant. Stacking the vectors θk(t, i) in a vector θk(t) ∈ R

mn :

θk(t) = (θT
k (t, 1), . . . θT

k (t, n))T , (13)

we see that the consensus recursion can be written in matrix form
as: θk(t + 1) = (W ⊗ I)θk(t), where ⊗ stands for the matrix
Kronecker product.

Two aspects are missing from the conventional description
of consensus in a wireless network: (1) the communication con-
straints mandate quantizing the state variables exchanged as follows:
θk(t, j) 
→ θ̄k(t, j) ∈ Lk = {q1(k),. . . ,qL(k)}, where Lk is an
m dimensional lattice; and (2) the nodes share the communication
medium and require a multiple access coding policy to deal with
multi-user inference.

3.1. Quantization

The residual error in consensus is:

ek(t) = (eT
k (t, 1), . . . eT

k (t, n))T = θk(t)− (1⊗ θk). (14)

We need to characterize how the choice of the number of quantizer
levels affect the error variance (10). In what follows we assume:
a.0 Quantization: All nodes use the same quantizer, with codes
Lk = Q1k × . . . × Qmk that form a square lattice; and denoting
by Qpk the number of levels in the one dimensional uniform lattice
Qpk,L =

�m
p=1

Qpk. We assume that the range of the pth quantizer
is Cσpk where σpk = maxi

�
V AR[{θk(0, i)}p] and C is a posi-

tive constant that renders clipping errors statistically negligible. The
resulting quantization error εk(t, i) = θk(t, i)− θ̄k(t, i) can be as-
sumed to be uncorrelated from state to state, approximately uniform,
and with:

V AR[{εk(t, i)}p] =
C2

12

σ2
pk

Q2
pk

; E{εk(t)εT
k (t)} = (I ⊗ Σk),

where Σk = diag(
σ2

1k

Q2

1k

, . . . ,
σ2

mk

Q2

mk

).
For consensus with finite precision, the vector update is θk(t +

1) = (W⊗I)θ̄k(t) = (W⊗I)(θk(t)+εk(t)). Therefore, the error
includes two terms, the first due to the incomplete convergence and
the second due to the finite precision ek(t) = ((W −J)⊗ I)θk(t−
1) + (W ⊗ I)εk(t− 1). As a function of the initial condition θk(0)
we can now calculate:

E{||(I ⊗ Λk)ek(t)||2} = E{||((W−J)t ⊗ Λk)θk(0)||2}

+
t�

t′=1

||W t′ ||2
m�

p=1

(λp
k)2

σ2
pk

Q2
pk

, (15)

where ||W t′ ||2 = trace(W 2t′).

3.2. Scalable multiple access

The motivation behind our multiple-access method is the realization
that the trade-off between the connectivity of the graph and speed
of convergence of average consensus, renders gossiping protocols
with traditional wireless packet switching unscalable in bandwidth
constrained environments. By studying the effect of the algebraic
connectivity ρ(W −J) as a function of the nodal degrees

�n
j=1

aij

it is possible to draw the following conclusions: (1) if one limits
the number of neighbors, by lowering the transmit power and en-
couraging spectral reuse, the protocol slows down; (2) if one allows
the number of neighbors to grow as the network size n increases by
increasing the transmission power, the speed of convergence tends
to saturate, while congestion slows down actual the transmissions.
The power control problem makes the protocol less robust and less
attractive.
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Consider quantized consensus. The resulting quantized update
ūk(t, i) =

�n
j=1

aij(t)(θ̄k(t, j)− θ̄k(t, i)) can be decomposed as:

ūk(t, i) =
L�

l=1

(ql(k)− θ̄k(t, i))mk(t, i, l) (16)

where, using an indicator function δ(x) = 1 iff x = 0 and 0 else:

{mk(t, i, l)}p =

n�
j=1

aij(t)δ({ql(k)− θ̄k(t, i)}p). (17)

This last equation is the corner point of our multiple access tech-
nique: in fact, our additional observation is that the state informa-
tion can be embedded in a code that delivers at each node the mes-
sage mk(t, i, l) directly and collaboratively. Next, we review our
novel multiple access protocol for average consensus [6] for coding
mk(t, i, l). Let us review first the assumptions we make on the phys-
ical communication layer. Let τ ∈ R indicate the continuous time
variable.
a.1 Signal Space – Time is slotted in slots of duration T = 1. The RF
signals transmitted belong to a signal space of dimension Qk ∝ BT
where B is the single-sided bandwidth allotted for communication.
We denote by {c1(τ )}Qk

l=1
, the base-band complex equivalent or-

thonormal basis chosen to span the signal space. The signal trans-
mitted by node i in the tth time slot is:

Si(τ, t) =

Qk�
l=1

si(t, l)cl(τ − tT ) (18)

where si(t) = (si(t, 1), . . . , si(t, Qk))T is the vector of coordi-
nates of the transmit signal with respect to the basis {c1(τ )}Qk

l=1
.

a.2 Node Power constraint – Each node has a per iteration power
constraint P =

�Qk

l=1
|si(t, l)|

2.
a.3 Incoherent channel: Fading + AWGN – Each received signal
Ri(τ, t) is affected by an independent additive white Gaussian noise
process Wi(τ ) with noise spectral density N0/2. The channel is
broadcast. Its distortion on ci(τ ) can be captured by a single inde-
pendent fading coefficient, changing over the slots as block fading,
denoted by hij(t) ∼ CN (0, αij), where αij is the average path-loss
(large scale fading). Reciprocity holds on average, i.e. αij = αji.
a.4 Half-duplex channel: If node i has si(t, l) 
= 0 for l ∈ S ⊆
[1, Qk], node i cannot sense any code transmitted in the sub-space
spanned by {cl(τ )}l∈S .

Based on (a.1-a.4), a sufficient statistic for the received signal is
ri(t, l) = n−1/2 < Ri(τ, t), cl(τ − lT ) >, for l ∈ [1, Qk]:

ri(t, l) =

�
1√
n

�n
j=1

hji(t)sj(t, l) + wi(t, l), if si(t, l) = 0;
0, else.

(19)
Given sj(t, l), ri(t, l) ∼ CN (0, 1

n

�
j �=i αij |sj(t, l)|

2 + N0

n
).

Channel codes: We fix Qk =
�m

p=1
Qpk and let l′ =�p−1

p′=1
Qp′k + l. We propose choosing the coefficients si(t, l

′)
as follows:

θk(t, i) 
→ θ̄k(t, i) 
→ si(t, l
′) = ejφlδ(ql′(k)− {θ̄k(t, i)}p).

(20)
where ql′(k) ∈ {Q1k, . . . ,Qmk} is ql′(k) = {ql(k)}p and φl ∼
U [0, 2π). With these codes, setting the adjacency matrix coefficients
to be equal to aij = αij/n, the Maximum Likelihood (ML) estimate
of {mk(t, i, l)}p in (17) is:

{m̂k(t, i, l)}m
p=1 = |ri(t, l

′)|2 −
N0

n
. (21)

The following two lemmas apply, which we state here without
proof:

Lemma 3.1 For any given initial state θk(0):

E{m̂k(t, i, l)} = mk(t, i, l).

Therefore, the multiple access coding method proposed on average
tends to the same result as quantized consensus.

Lemma 3.2 A consensus state is θk(t) = (1 ⊗ c). In the limit as
n→∞ consensus states are absorbing, and the protocol converges
to consensus with probability one.

With our access policy, the extra error term that affects the quan-
tized consensus the update in (16) in each consensus iteration:

ε
′
k(t, i) =

L�

l=1

(ql(k)− θ̄k(t, i))(mk(t, i, l)− E{m̂k(t, i, l)}),

(22)
tends to vanish in the mean square sense if n � 1 due to the law of
large numbers.

3.3. Optimal resource allocation

When the number of nodes is large the noise becomes negligible and
the ML estimate m̂k(t, i, l) →mk(t, i, l) in the mean square sense.
In these conditions the brunt of the error that is fed into the average
consensus iteration is due to the quantization and the effect of (22)
can be neglected.

Note that, since Qk = Θ(BT ) the cost in time and bandwidth
associated with the transmission of our channel codes in (20) is equal
to the sum of the number of levels, i.e. Qk =

�m
p=1

Qpk. Interest-
ingly, this cost is unaffected by how large n is!

With λ2(W ) representing the second largest eigenvalue of W
(the largest one being 1) the error can be bounded as follows:

1

n
E{||(I ⊗ Λk)ek(t)||2} =≤ λ2t

2 (W )E{||(I ⊗ Λk)θk(0)||2}

+ t

m�

p=1

(λp
k)2

σ2
pk

Q2
pk

, (23)

and the communication constraint only affects the magnitude of the
term
�m

p=1
(λp

k)2
σ2

pk

Q2

pk

. Hence the resource allocation optimization
problem becomes:

min
Qpk

m�

p=1

(λp
k)2

σ2
pk

Q2
pk

s.t.
m�

p=1

Qpk = Qk = Θ(BT ). (24)

Solving this using Lagrange multipliers gives us the following
lemma:

Lemma 3.3 The resource allocation policy is given by -

Qpk =
Qk(λp

k)
2

3 σ
1

3

pk

�m
p′=1

(λp′

k )
2

3 σ
1

3

p′k

, p = 1, . . . , m (25)

where σ2
pk = V AR({UT

k (Hi)T (Ri)−1zi
k}p) andMk = UkΛkUk

with Λk = diag(λ1
k, . . . , λm

k ).
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Fig. 1. (a) Error ellipses for the x̂k|k at node 5 are shown at every 20 time steps. This is representative of the error ellipses at other nodes.
(b) MSE: performance of the data driven DKF algorithm is compared with and without resource allocation. MSE of the CKF is also shown
as a baseline.

4. NUMERICAL RESULTS

We simulated a network with 25 nodes all of which track the position
of an object moving in a rough planar circle. The nodes are located
randomly in a unit square plane through a uniform distribution. The
parameters of the linear dynamical system (1) are -A = [1−Δ;Δ 1]
where Δ = 0.02 is the time-step, B = Hi = P0 = I2, G = 0.01,
Ri is diagonal with entries ∈ [0.01, 0.4], and x0 = [0, 2]T . The ini-
tial estimate of each node is x0. The resource allocation policy uses
Qk = 200 and E{UT

k y
i
ky

iT
k Uk} = UkR−1

i ((G+2)R−1

i +I2)U
T
k .

Each DKF iteration uses t = 5 data driven consensus iterations to
compute θk(t, i) at SNR 30dB.

Fig. 1(a) shows the path estimated by node 5 (picked arbitrarily)
and its accompanying 99% confidence region error ellipses. The
error ellipses were obtained through monte carlo simulations using
300 trials. This numerically shows that the proposed distributed filter
does not diverge. Furthermore, the path estimated by the distributed
filter compares favorably to the estimate obtained by the central KF.

Fig. 1(b) compares the MSE of the distributed filter and shows
that the performance is improved by utilizing the proposed resource
allocation policy. The MSE is compared with a naive scheme which
simply allocates equal precision to each component of the vector be-
ing averaged. Interestingly, the quality of nodes’s estimates changes
with variations in the process being tracked.

5. CONCLUSION

In this paper, we presented a wireless communication architecture
for distributed Kalman filtering based on average consensus in the
context of sensor networks.

In our architecture, nodes schedule their transmissions accord-
ing to the data they possess. This leads to a fixed communication
cost independent of the network size n. We provided a strategy for
allocating communication resources for data driven consensus which
minimizes the error across components in the state estimate x̂k|k.
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