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ABSTRACT

We consider minimum mean square error (MMSE) decoding
in a dense sensor network where distributed quantization is
used to improve the performance. In view of the exponen-
tial complexity of the optimal decoder, we present a frame-
work based on Bayesian networks for designing a scalable,
but near-optimal decoder. In this approach, a complexity-
constrained factor graph is obtained by an algorithm which
constructs an equivalent Bayesian network using the maxi-
mum likelihood (ML) criterion, based on a training set of sen-
sor observations. Our simulation results show that, the scal-
able decoders constructed using the proposed approach pre-
form close to optimal, with both Gaussian and non-Gaussian
sensor data.

Index Terms— distributed quantization, scalable decod-
ing, optimal estimation, factor graphs, Bayesian networks

1. INTRODUCTION
Sensor networks deploying a large number of tiny, battery-
powered wireless sensors to acquire measurements from a
physical process are envisioned to find wide ranging applica-
tions. One of the important issues in this context is distributed
source coding [1], where the high correlation among the sen-
sors which do not communicate with each other, is exploited
at a centralized joint decoder for efficient communication of
the sensor outputs. In general, the joint-decoder, which is
optimal under the widely used MMSE criterion, has a com-
plexity that is exponential in the number of sensors [2]. Thus,
to realize the full potential of a large-scale sensor network,
it is crucial to develop low-complexity and scalable joint-
decoders which yield near-optimal reconstructions of the ob-
served physical process.

In previous work, [2] considers a sensor network with
jointly Gaussian observations and proposes a procedure for
scalable decoding based on running the sum-product algo-
rithm on an appropriately constructed factor graph [3]. The
main idea is to factorize the joint probability mass function
(pmf) of the quantized sensor outputs using an approximate
chain rule, where each factor is only a function of few vari-
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ables. The best approximation to the joint pmf, which corre-
sponds to a fully connected factor graph is obtained by mini-
mizing the Kullback-Leibler distance (KLD) between the two
pmfs. The factor graph is constructed such that the over-
all decoding complexity is linear in the number of sensor
nodes. The simulations results show that, the proposed de-
coder yields near optimal performance with Gaussian sources.
In a subsequent work [4] incorporates the encoder design also
into the method of [2], where the encoders exploit the knowl-
edge of source correlations to reduce their transmission rates,
by using binning of the quantizer outputs. In order to keep the
complexity low, binning is preformed within clusters of sen-
sor nodes, obtained by using a hierarchical algorithm which
forms clusters of highly correlated sources, also based on the
KLD. Again, Gaussian source statistics are assumed.

In contrast, this paper presents a more general approach
to factor graph construction based on representing a factor-
ized multi-variate pmf using a graphical model referred to
as a Bayesian network (BN) [5]. The optimal factorization
is then obtained by ML estimation of the underlying BN
structure using a training set of sensor observations, whose
distribution is not necessarily Gaussian. Furthermore, in or-
der to preserve the universality of our approach, the sensor
clustering for designing binning-based encoders is carried
out using an algorithm which uses the Chi-square test [6] to
measure the degree of dependence between a pair of sensors.
The effectiveness of the proposed design procedure is inves-
tigated using simulation experiments. In experiments with
Gaussian sources, it was observed that the proposed method
yielded a system which performs identically to the system
obtained by the KLD-based method. Furthermore, it was also
observed that for non-Gaussian sources (such as Gaussian
mixtures), the proposed design method yielded systems with
significantly better performance compared to the KLD-based
method.

2. PROBLEM STATEMENT
In the system with N sensors shown in Fig.1, each sen-
sor observes a real valued continuous source sample Xn,
n = 1, . . . , N (in the following, we will use upper case
to denote random variables, lower case to denote the real-
izations, and bold-face to denote random vectors). In view
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Fig. 1: System model for a sensor network with N nodes.

of the low-complexity requirement, each sensor is assumed
to consist of a Lloyd-Max scalar quantizer and a binning
function. In the n-th sensor node, Xn is first quantized into
Un ∈ {1, . . . , 2Bn}, where Bn is the resolution (in bits) of
the quantizer Qn, The quantizer output Un is then mapped to
the transmission index In ∈ Ω = {1, . . . , 2Rn} by using an
appropriate binning function, achieving a transmission rate of
Rn ≤ Bn bits/sample. Each sensor transmits its output (us-
ing a suitable modulation scheme) to a central decoder via an
interference-free, memoryless additive white Gaussian noise
(AWGN) channel. Let the output of the n-th channel after de-
modulation/detection be În ∈ {1, . . . , 2Rn}, n = 1, . . . , N .
Then it follows that P (Î|I) =

∏N

n=1 P (În|In), where
I = (I1, . . . , In)T , Î = (Î1, . . . , În)T , and P (În|In) is
the transition probability of the effective discrete channel
from the n-th sensor to the decoder.

For simplicity, let us first assume that binning is not used,
so that In = Un. Let the reconstruction codebook of Qn be
{x̃n(in), in ∈ Ω}. Given the decoder input vector î, we define
the optimal decoder output of the n-th sensor observation as

x̂∗n (̂i) = arg min
x̂n

E
{
[x̃n(In) − x̂n (̂i)]2

}
. (1)

It is well known that the optimal solution is the conditional
mean

x̂∗n (̂i) = E{x̃(In)|̂i} =
∑

∀i∈Ω

x̃(i)P (in = i|̂i)

=
1

P (̂i)

∑

∀i∈Ω

x̃(i) .
∑

∀i∈ΩN ;in=i

P (i)
N∏

k=1

P (̂ik|ik). (2)

This expression can be systematically evaluated by running
the sum-product algorithm on a factor graph based on the
chain-rule factorization

∏N

n=1 P (in|in−1, in−2, . . .) of the
joint pmf P (i) [3]. However, the computational complex-
ity of this task is exponential in N [2]. The complexity
can be controlled by using an approximate factorization
P̃ (i) =

∏M

m=1 fm(.), where the factors fm(·) are condi-
tional probabilities involving only a few variables such that
a fully connected factor graph is obtained. In the following,
we present an approach to constructing such a factorization
which ensures a computational complexity linear in N .

3. BAYESIAN NETWORKS
A Bayesian network (BN) [5] is a probabilistic graphical
model which can be used to compactly represent the joint

pmf of a large number of random variables which exhibit
conditional dependencies. That is, a given factor graph can
also be represented by a BN. We can thus construct a factor
graph with desired complexity by constructing an appropri-
ate BN. More formally, BN Λ(I) is a directed graph with
N nodes, in which each node represents a random variable
and a directed edge (or the lack of an edge) between two
nodes indicates a conditional dependence (or independence)
between two random variables. Suppose that a training set S
of observations from the true pmf P (I) is available. Then,
one approach to obtaining a factorization of P (I) is to start
with a BN with no edges, i.e., all variables assumed indepen-
dent, and then to systematically add edges between nodes.
In order to ensure that the resulting pmf is a good approxi-
mation to P (I), at each step t, we obtain a new BN Λt(I),
by adding a new edge to Λt−1(I), such that the increase in
the likelihood P (S|Λt(I)) is maximum. While, this greedy
search procedure does not necessarily yield the BN with the
overall ML, it is chosen in view of it’s computational feasi-
bility. Denote the vector of parent nodes of In in Λ(I) by
Zn ∈ {zn1, . . . , znqn

}, n = 1, . . . , N . Let the set of quan-
tization levels of the n-th node be {vn1, . . . , vnrn

}. Also, let
Lnjl be the number of times In = vnl and Zn = znj jointly
occurred in the training set S. Then, it can be shown that [7,
appendix]

P (S|Λ) =

N∏

n=1

qn∏

j=1

(rn − 1)!

(Lnj + rn − 1)!

rn∏

l=1

Lnjl! (3)

where Lnj =
∑rn

l=1 Lnjl. Rather than starting with the BN
corresponding to the case of all independent variables, a better
method is to first determine a set of factors according to the
degree of statistical dependence among variables. Based on
this idea, we propose a two step procedure for constructing a
BN to approximate P (I) as follows.

4. DESIGN PROCEDURE
Step 1: Clustering of sensor nodes to obtain an initial factor-
ization for P (I). The grouping of highly dependent sensors
in this manner also allows us to design effective binning func-
tions to be used for distributed encoding, in a simplified man-
ner, i.e., for the optimization of binning functions, only those
sensors in a cluster are considered.
Step 2: Linking the clusters using the ML-based BN con-
struction to obtain a factor graph which allows us to compute
a near-optimal approximation to (2) at a complexity linear in
the network size N .

An example of the factor graph obtained by using the pro-
posed procedure is shown in Fig. 2. In this case, Step 1 has
been used to form 3 clusters Γ1, Γ2, and Γ3, and Step 2 has
then been used to obtain the dependencies f1, . . . , f5 between
the variables, as shown.
A. Sensor clustering algorithm - The basic approach is

to start with an undirected graph in which each node is con-
nected to every other node, and then systematically eliminate
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Fig. 2: An example of a factor graph constructed by the proposed approach, for a sensor
network with N = 9 nodes. The clusters Γ1 , Γ2 , and Γ3 have been obtained by
the given clustering algorithm, with Zmax = 3 and Zmin = 2. Note that the
function nodes correspond to f1 = P (I2, I4, I7), f2 = P (I5, I9|I4, I7), f3 =
P (I6|I5, I9), f4 = P (I1, I3|I2, I4), and f5 = P (I8|I3, I1), and the factor
graph corresponds to P̃ (I) = f1.f2.f3.f4.f5 .

some edges, based on a test of statistical independence of ran-
dom variables associated with the corresponding node-pairs,
until we are left with M unconnected clusters of nodes. Let
the maximum and minimum number of nodes to be included
in each sensor cluster be Zmax and Zmin respectively. On the
one hand, it is necessary to limit the cluster size in this man-
ner, in order to control the degree d of the final factor-graph.
The degree of a factor graph is the maximum number of in-
cidents edges of a function node, and it can be shown that
the computational complexity of the sum-product algorithm
is exponential in d. Note that, limiting d also simplifies the
design of binning functions to be used in the encoders. On
the other hand, the lower limit on the cluster size ensures that
the correlation among a sufficiently large number of sensors
is exploited by each encoder through binning.

As a measure of statistical independence between two dis-
crete random variables Ij and Ik , we use the Chi-square test
statistic [6]

Υ2
j,k =

∑

ij ,ik

[P̃ (ij , ik) − P̃ (ij)P̃ (ik)]2

P̃ (ij)P̃ (ik)
, (4)

where P̃ (ij , ik), P̃ (ij) and P̃ (ik) are the estimates (using
training set S) of the joint probability and marginal probabili-
ties of Ij = ij and Ik = ik. In each iteration of the algorithm,
the edge corresponding to a pair of variables with the lowest
Υ2 is eliminated, while ensuring that existing clusters which
satisfy both size constraints are not further split. This process
is repeated until each remaining cluster contains less than or
equal to Zmax sensor nodes.
B. Factor graph construction using Bayesian networks-

Let the set of clusters obtained in the previous step be denoted
by Γm, m = 1, . . . , M . Since there are no links between the
clusters, this is a BN which corresponds to the factorization

P̃ (I) =

M∏

m=1

P (Γm). (5)

Our goal is to link each cluster to exactly one other cluster
and thereby form a fully connected factor graph, by introduc-
ing conditional dependencies between variables in different
clusters (see Fig. 2). This is achieved by choosing those con-
ditional dependencies which result in the BN with the highest

value of likelihood (3), by using the greedy search procedure
outlined in Sec. 3. In each iteration t, the current BN Λt−1 is
modified by linking an isolated cluster Γl to one of the already
connected clusters, such that this results in the largest increase
of the likelihood value (3) of the modified BN Λt. However,
rather than considering the dependency between pairs of vari-
ables, we consider the dependency given by the conditional
probability P (αl|βm) of the set of nodes αl ⊂ Γl, given the
set of nodes βm ⊂ Γm. In order to control the complexity of
this task, we specify maximum sizes |αl| ≤ λ and |βm| ≤ μ

for the two sets αl and βm respectively. Note that introduc-
ing a conditional dependency into the current BN in the above
manner is equivalent to replacing the factor P (Γl) in (5) by
the new factor

P (Γl|βm) = P (αl|βm)P ({Γl − αl}|αl, βm)

≈ P (αl|βm)P ({Γl − αl}|αl), (6)

where {Γl − αl} denotes the set of those nodes in Γl which
excludes the set αl, and the last approximation is reason-
able since the variables within a given cluster are known to
be highly correlated. For example, consider the factor graph
shown in Fig. 2 (where λ = μ = 2). In this case, the cluster
Γ2 = {I5, I6, I9} is linked to the cluster Γ1 = {I2, I4, I7}
to obtain the factor P (Γ2|β) = P (I5, I9|I4, I7)P (I6|I5, I9),
where α = {I5, I9}, β = {I4, I7}, and {Γ2 − α} = {I6}.
After an appropriate chain rule expansion of the two condi-
tional probabilities in (6), they can be introduced into the BN
[5].

5. SIMULATION RESULTS
In order to investigate the performance of scalable decoders
constructed with the proposed algorithm, we conducted a
number of simulation experiments involving both Gaussian
and non-Gaussian sensor observations. In all our experiments
with jointly Gaussian sensor observations, the factor-graphs
constructed with the proposed approach and the KLD-based
approach in [2] and [4] were found to be identical, and hence
the performance of the resulting decoders was also identical.
However, when the sensor observations were non-Gaussian,
the proposed approach lead to designs which were signifi-
cantly better.

In our experiments with non-Gaussian sources, the cor-
related observations were generated as follows. Let Y =
(Y1, . . . YN ) be a vector of independent variables, with Yn

having the Gaussian mixture probability density function
(pdf) fn(y) = γnN (y; μn,1, σ

2
n,1)+ (1−γn)N (y; μn,2, σ

2
n,2),

where N (y; μ, σ2) denotes a Gaussian pdf with mean μ and
variance σ2, and 0 < γn < 1, n = 1, . . . , N . Then, a vector
of sensor observations X = (X1, . . . , XN ) is obtained by
the linear transformation X = AY, where A is a N × N

constant matrix. We here choose an example with N = 9
sensors, in which case it is computationally feasible to esti-
mate the performance of the optimal decoder for comparison.
A training set of 100,000 samples was used.
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Fig. 3: Performance of several decoders as a function of CSNR. The network has N =
9 sensing nodes and each node uses rate 1-bit/sample quantization, without subsequent
binning. Scalar decoder refers to independent MMSE decoding of sensor observations.

First, we consider the performance of joint decoding when
sensors do not use correlation for distributed quantization,
i.e., no binning used. Each sensor uses a transmission rate of
1 bit/sample. Fig. 3 shows the reconstruction signal-to-noise
ratio (RSNR) of several decoding schemes as a function of
the channel signal-to-noise ratio (CSNR). In the case of both
KLD-based method and the proposed method of design, the
degree d of the factor graph is limited to 3. Fig. 3 also shows,
for comparison, the performance of the decoder which op-
timally reconstructs each sensor output independently of the
others (scalar decoder) and the optimal joint decoder. As can
be seen, the proposed method gives a decoder which is clearly
better. The key difference is that the approximated factoriza-
tion of the joint pmf constructed by the proposed method is
closer to the true joint pmf than that constructed by the KLD-
based method.

Next, we investigate the performance of joint decoding
when binning is used in each sensor to reduce its transmis-
sion bit rate. In this case, the optimal binning function to be
used at the output of each quantizer has been designed by the
simulated annealing based procedure described in [8]. Re-
call that, for binning, only those sensors within each cluster
(found by the Step 1 of the design algorithm in Sec. 4) are
considered. The performance of several systems is compared
in Fig. 4. As in the previous case, each sensor uses a transmis-
sion rate of 1 bit/sample. However, in order to benefit from
binning, each quantizer now uses a rate of Q > 1. In Fig. 4,
we consider systems with Q = 2 and Q = 3 bits/sample. The
performance improvement due to the use of distributed quan-
tization is of course clear. But more importantly, the decoders
designed with the proposed method perform significantly bet-
ter than those designed with the KLD-based method. In the
case of Q = 2, we also include the performance of the optimal
decoder for comparison, which shows that the performance of
the proposed design is within less than 0.25 dB in the entire
CSNR range (with Q = 3, estimating the optimal decoder
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Fig. 4: Performance of various decoders when binning-based distributed quantizers are
used in sensors. Each sensor uses a quantizer rate of Q bits/sample and a transmission
rate of 1 bit/sample. The curves (a) and (b) are the same as those in Fig. 3. For the
system with Q = 2, the performance of the optimal decoder is shown in curve (e).

performance was computational infeasible). In contrast, the
KLD-based design performs more than 1.0 dB below at low
CSNR.

6. CONCLUDING REMARKS
The Bayesian networks present an effective framework for
constructing factor-graphs for scalable decoding in large-
scale sensor networks. Within this framework, it is also quite
possible to incorporate models such as Markov random fields
or other local dependency structures to further simplify the
decoder.
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