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ABSTRACT

Average consensus algorithms are gossiping protocols for av-
eraging original sensor measurements via near neighbor com-
munications. In this paper, we consider the average consensus
algorithm under communication rate constraints. Without any
communication rate restrictions, the algorithm ideally allows
every node state to converge to the initial average in the limit.
Noting that brute force quantization does not guarantee con-
vergence due to error propagation effects, in our recent work
we proposed two source codingmethods which use side infor-
mation (predictive coding and Wyner-Ziv coding) to achieve
convergence with vanishing quantization rates in the case of
block coding. In this work, we focus on a simplified pre-
dictive coding scheme with variable quantization rates over
the iterations and on a communication network with regular
topology. We characterize the asymptotic rate which allows
to achieve a bounded convergence in terms of the initial con-
ditions (i.e, the rate at the first iteration, and the initial state
correlation), and the connectivity of the network. Moreover,
we study the optimal rate allocation among the average con-
sensus iterations subject to the constraints that the total num-
ber of quantization bits is fixed.

Index Terms— Sensor networks, distributed algorithms,
communication systems.

1. INTRODUCTION

Assume that each sensor of a network observes a real scalar
value xi(0) where i denotes the sensor index. Distributed av-
erage consensus algorithms are decentralized methods allow-
ing all nodes to compute the average of the initial observa-
tions (1/n

∑n

i=1 xi(0)) in an iterative fashion via only near
neighbor communications. Different types of consensus pro-
tocols and their performance characteristics have been studied
extensively in the literature [1, 2, 3]. We are specifically in-
terested in the synchronous linear consensus algorithm where
each sensor updates its own state by a weighted sum of dif-
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ferences between its neighbors’ values and its local value:

xi(k + 1) = xi(k) +
∑
j∈Ni

[W ]ij (xj(k)− xi(k)) (1)

W is the weight matrix with non-negative entries where
[W ]ii = 1 −∑n

j=1[W ]ij and Ni is the neighbor set of node
i, i.e., Ni = {j : [W ]ij > 0, j �= i} . In vector form (1) is:

x(k + 1) = Wx(k) (2)

where x(k) = [x1(k) . . . xn(k)]T . We have recently studied
the average consensus algorithm under finite rate quantization
constraint [4]. In particular, we have modeled the quantiza-
tion noise as an uncorrelated additive noise which is a com-
monly used model when the quantization rate is sufficiently
high [5, 6]. Other treatments of the quantized consensus can
be found in [7, 8]. Our key observation was that both tem-
poral and spatial correlation among the node states increases
as the system progress through the time epochs. Hence, we
proposed a communication scheme based on side information
which utilizes the increasing correlation among the states. We
showed that under these schemes a consensus in the mean
of order two can be achieved and the asymptotic average is
bounded from the initial average in the mean squared error
(MSE) sense. We also derived necessary and sufficient condi-
tions on the quantization noise variances for bounded MSE
convergence and proved that there exists rate regions with
vanishing behavior such that bounded convergence is satis-
fied. Furthermore, in [9], we have characterized the MSE per-
formance of the coding scheme in terms of the connectivity,
fixed quantization rate, and the initial conditions as the node
density increases or in homogeneously distributed networks.
In this paper, we extend the analysis given in [9] such that

quantization rate is not fixed through the iterations and we
fully characterize the asymptotic rate behavior in terms of the
initial conditions (i.e, the rate at the first iteration, and the
statistics of x(0)) and the connectivity of the network. Fur-
thermore, we study the rate allocation problem among the
iterations subject to the constraints that the total number of
quantization bits is fixed and the bounded asymptotic conver-
gence is guaranteed.
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Fig. 1. Differential encoder/decoder diagram.

2. QUANTIZED CONSENSUS MODEL

In this section, we define our model for the rate constrained
average consensus (RCAC). To exploit the local temporal cor-
relation, we utilize a simple, suboptimum first order predic-
tive coding model: Node i quantizes the difference between
its unquantized current state value and quantized previous
state value, i.e. xi(k) − x̃i(k − 1) as in Fig. 1. We define
di(k) as the prediction or innovation to be transmitted, Q[·]
as uniform quantizer, d̃i(k) as the quantized prediction error,
x̃i(k) as the noisy state reconstruction and ni(k) as the quan-
tization error. Then, we derive the noisy state reconstruction
as:

di(k) = xi(k)− x̃i(k − 1) (3)
d̃i(k) = Q[di(k)] = Q[xi(k)− x̃i(k − 1)]

= xi(k)− x̃i(k − 1) + ni(k) (4)
x̃i(k) = d̃i(k) + x̃i(k − 1)

= xi(k) + ni(k) (5)

where (3) is due to the fact that at each iteration the differ-
ence between the current state and the previous quantized
state is transmitted, finally, (4) and (5) follow from modeling
the quantization error as additive noise and the fact that the
previous quantized state value is also known at the neighbors’
decoders, respectively.
Once the prediction error (di(k)) is transmitted and the

noisy states (x̃i(k)) are reconstructed at the nodes, the state
values are updated by the recursion:

x(k + 1) = Wx̃(k) = W (x(k) + n(k)) (6)

where v(k) = [n1(k) n2(k) . . . nn(k)]T , and n(k) is assumed
to be uncorrelated with the messages and is also spatially and
temporally uncorrelated, zero mean random vector1.
In the rest of the paper, we assume that each node en-

codes and transmits a long block of state variables where the
1See Remark 3 in [9] regarding the discussion about the validity of these

assumptions.

block entries are i.i.d. random variables. Such an assumption
is required for utilizing vector quantization properties. We
note that each entry of the block follows the update equation
given in (6) independently. Moreover, the statistical proper-
ties of the states and quantization rates mentioned in the paper
are per dimension quantities. We focus on the quantization
scheme where quantization rate is uniform among the sensors
but variable through the iterations; i.e., can be changed from
iteration to iteration.

3. ASYMPTOTIC RATE BEHAVIOR

In this section, we first model the quantization rate for a given
iteration in terms of quantization rates in previous iterations,
initial conditions, and the connectivity of the network. Then,
we characterize the behavior of the quantization rate as the
number of iterations grows. By (6), the covariance of the sen-
sor states evolves according to the following recursion:

Σ(k + 1) = W (Σ(k) + Υ(k))WT (7)

where Σ(k) = E{x(k)xT (k)} and Υ(k) = E{n(k)nT (k)},
with E{·} denoting the statistical expectation. As in [9], we
focus on a 2-D regular network.2 Boyd et. al. show that for
a random network where n nodes are distributed uniformly
on a 2-D unit torus with connectivity radius r, the degree
of each node is O(nr2) with high probability[10]. There-
fore, our analysis is also valid for sufficiently large random
networks. Under regularity conditions, weight matrix of the
network (W ) and initial correlation matrix (Σ(0)) are block
circulant with circulant blocks and they are simultaneously
diagonalizable by the Kronecker product of two (

√
n × √n)

FFT matrices. Therefore, the recursion in (7) can be written
in terms of eigenvalues as:

σi(k) = |ωi|2 (σi(k − 1) + υi(k − 1)) (8)

where σi(k), ωi, υi(k) are the eigenvalues of Σ(k), W and
Υ(k), and i ∈ {1, 2, . . . , n}. The eigenvalues of W are or-
dered, i.e. 1 = w1 ≥ w2 ≥ . . . ≥ wn. Moreover, the noise
covariancematrix is diagonal with equal entries and eigenval-
ues of the matrix are given as:

υ(k) =
1

n22R(k)

(
n∑

i=1

(ωi − 1)2 (σi(k − 1) + υ(k − 1))

)

(9)
whereR(k) is the quantization rate at iteration k. The deriva-
tion of (9) can be found in [9].
We will use the system of difference equations in (8), (9)

and the constraint that R(k) > 0, ∀k ∈ {1, 2, . . .}, to char-
acterize the rate behavior. The constraint on R(k) > 0 guar-
antees that the above system represents a valid quantization

2A regular graph is a graph where each vertex has the same number of
neighbors.

2718



scheme (non-positive rate is not possible). Since we are inter-
ested in the asymptotic behavior, we exclude the case where
R(k)=0 for finite k. In [4], we have shown that theMSE of the
average consensus protocol can be characterized as the sum-
mation of the noise variances over iterations (under regularity
conditions, summation of the eigenvalue of noise covariance
matrix over iterations):

MSE∞ = lim
s→∞

s∑
k=0

υ(k). (10)

By definition, bounded MSE convergence constraint implies
MSE∞ =

∑∞
k=0 υ(k) < ∞. We can enforce bounded con-

vergence by choosing:

υ(k + 1)

υ(k)
= β (11)

subject to
∞∑

k=0

υ(k) = υ(0)

∞∑
k=0

βk < ∞. (12)

Such a constrained is satisfied if 0 < β < 1. We are well
aware that geometric convergence of the noise variances is
neither the unique way to obtain bounded convergence nor
results in optimum (minimum) rate regions. More general
cases can be captured by allowing (β) to be a function of the
iteration index,(k). For mathematical brevity, we focus on the
special case of geometric convergence.

Remark 1. Given (0 < β < 1), network connectivity
(w1, . . . , wn), and initial conditions (σ1(0), . . . , σn(0), R(0)),
quantization rates follow the non-linear recursion forall
k ≥ 1:

22R(k+1) =
22R(k)

β

∑n

j=2,wj �=0(wj − 1)2σj(k)∑n

j=2,wj �=0
(wj−1)2

w2

j

σj(k)

+
1

nβ

n∑
j=2

(wj − 1)2). (13)

Since universal solution for the non-linear recurrence sys-
tems neither exists nor the behavior of quantization rates (i.e
decreasing, increasing, vanishing, etc.) is obvious from (13),
we focus on the limiting behavior of the above system. The
behavior is characterized by the following lemma:

Lemma 1. Quantization rates for the average consensus pro-
tocol under predictive coding scheme defined through equa-
tions (8)-(9) converges to:

lim
k→∞

R(k) = R� =
1

2
log2

(
1

n(β −K�)

n∑
i=2

(wi − 1)2

)

(14)
where:

K� =

∑n

j=2,wj �=0

(wj−1)2w2

j

β−w2

j∑n

j=2,wj �=0
(wj−1)2

β−w2

j

(15)

and w2
j < β < 1 for all j ∈ {1, . . . , n}.

The proof is omitted due to the space constraints and given
in [11]. We note that limiting value of the quantization rate
is neither a function of initial node correlation nor the initial
quantization rate. It is only a function of the connectivity and
the behavior of the noise variance (β). On the other hand,
node correlation and the initial quantization rate affect the
MSE through (10). We also note that achievable noise vari-
ance behavior depends on the connectivity; i.e., as the con-
nectivity increases, the range of achievable β also increases.
Next, we characterize the rate regions ({R(0), R(1), . . .})

such that bounded convergence is achieved with vanishing
quantization rate (limk→∞ R(k) → 0). Given the network
connectivity (wi) and the network size (n); β0 defining the
rate region which achieves a bounded convergence with van-
ishing quantization rate is found by solving R� = 0 in (14):

β0 =
1

n

n∑
i=2

(wi − 1)2 +

n∑
i=2,wi �=0

(wi − 1)2w2
i

β0 − w2
i

n∑
i=2,wi �=0

(wi − 1)2

β0 − w2
i

(16)

We are particularly interested in the solution w2
2 < β0 < 1. If

such a solution exist, corresponding rate region can be found
for a desiredMSE∞ follows:

1. Choose initial quantization rateR(0) such thatMSE∞ =
v(0)/(1− β�).

2. Choose the quantization rates R(k) iteratively by (13)
for all k > 1.

4. RATE ALLOCATION PROBLEM

In this section, we study an achievable rate distortion re-
gion for average consensus. We constraint MSE∞ ≤ D
and choose β to minimize the total number of bits spent
RD =

∑∞
k=0 R(k).

Since a closed form solution for (13) does not exists, we
focus on numerical solutions of the optimal distributions of
the quantization rates among the iterations by imposing a spe-
cific trend for β. For the regular graph with 64 nodes, with
connectivity radius 0.25 and initial observations uncorrelated
(i.e., σi(0) = σj(0), ∀i, j), the total number of bits spent over
one thousand iterations versus the MSE is given in Fig. 2. For
each MSE-rate pair. the algorithm is initialized with a quanti-
zation rate 5 ≤ R(0) ≤ 20 and the R(k) is calculated by (13)
for a given 0.70 ≤ β ≤ 0.95. We note that such β ensure
that the limit in (14) is non-negative. We notice the fact that
given the total number of bits, one can achieve a better MSE
performance by choosing a larger β.
Fig. 3 shows the behavior of the quantization rates over

iterations for, β = 0.95, β = 0.90 and β = 0.85 constrain-
ing the total number of bits to be fixed to

∑200
k=0 R(k) 
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Fig. 2. MSE (dB) vs sum of quantization rates for different β.

225. For β = 0.95, the algorithm starts with 20 bits per
node and slowly converges to 0.005 bits per node. On the
other hand, for β = 0.90, the algorithm initializes with 19.2
bits per node, stays under the β = 0.95 curve initially, then
crosses the curve and follows a similar behavior converging
to 0.047. The β = 0.85 curve starts at 18.2 bits per node and
converges to 0.091 slower than both 0.90 and 0.95 curves.
The MSE performances of these schemes are different, i.e.,
−76dB,−74dB and −70.4dB respectively, since as we noted
in Fig. 2, a larger β results in a better MSE performance
for a fixed number of total bits spent. As we mentioned in
Section 3, β0 may have an upper bound which is less than
unity and this particular value results in vanishing rate be-
havior. Therefore, we conclude that if such a solution exists,
β� imposing a vanishing rate behavior achieves the best MSE
performance given the total number of bits spent. If such a β�

does not exist, then β� → 1 performs the best.

5. CONCLUSION

In this paper, we focus on the quantized consensus problem
where quantization may change over the iterations. In this
scenario, we characterize the limiting behavior of the quanti-
zation rate for the average consensus protocol under the first
order predictive coding scheme subject to: 1)A bounded con-
sensus is achieved, 2) the quantization rate has a limit, 3)the
connectivity is as of a regular graph. Under these constraints,
we show that the limit is a function of the behavior of the
noise variances and the network connectivity. As a conse-
quence, the limit is independent of the initial rate and sensor
observation correlation. We also show that the speed at which
quantization noise decays is strongly dependent on the con-
nectivity of the network, i.e. the more connected the network
is, the faster decay is achievable with limk→∞ R(k) < ∞.
Furthermore, we analyze the optimal rate allocation problem
among the average consensus iterations subject to the con-
straints that the total number of quantization bits is fixed. By
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Fig. 3. Number of bits spent vs iteration number for different
β.

numerically calculating rate-distortion regions, we show that
a higher initial rate and a smaller β� achieves a better MSE
than a lower initial rate and a larger β�.
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