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ABSTRACT 

 
Power consumption is a critical concern in communications over 
wireless sensor networks (WSN).  In this paper, we address the 
rate-allocation problem for Slepian-Wolf coding of multiple 
correlated sources. The goal is to find the optimal rate-point that 
allows lossless reconstruction of the sources, while minimizing the 
overall transmission power consumption of the WSN under an 
exponential cost model. A novel water-filling algorithm to be 
performed by the receiver is proposed to solve the problem in a 
recursive manner. The feasibility and optimality of the proposed 
solution are analyzed mathematically and verified experimentally. 
Compared to the conventional Lagrangian-multiplier approach, our 
algorithm achieves dramatic reduction in computational 
complexity. 

Index Terms—Slepian-Wolf coding, wireless sensor network, 
power optimization, rate-allocation, water-filling model. 

 
1. INTRODUCTION 

 
Significant efforts have been made in recent years in building 
wireless sensor networks (WSN) from computing devices with 
integrated sensing and wireless communication capabilities. 
Among others, video communication over WSN is envisioned for a 
wide range of applications, such as battlefield intelligence, 
surveillance, emergency response, and multimedia systems in 
consumer electronics [1]. Unlike many other wireless devices, the 
energy provisioned for a wireless sensor node is not expected to be 
easily renewable throughout its lifetime, which poses significant 
challenges to the design of WSN systems. In this context, we are 
interested in power-aware distributed source coding (DSC) [2], 
because its “simple encoding, complex decoding” principle is very 
suitable for video communication over WSN. 

DSC can be categorized into lossless DSC and lossy DSC. 
Lossless DSC is also known as the Slepian-Wolf coding (SWC) [3], 
which can be treated as a channel coding problem [4]. In recent 
years, practical SWC’s, e.g., [5][6], based on state-of-the-art 
channel codes such as the turbo codes and the LDPC codes have 
shown near-capacity coding performance. Further advances in 
practical SWC design make it possible to achieve any point inside 
the Slepian-Wolf (SW) region [7]. 

To minimize the sensor node’s power consumption in 
transmitting the encoded bits over the WSN, careful rate-allocation 
(RA) is needed among the sources. In [8], separable cost functions 
with the linear and the exponential cost models are considered, and 
the RA problem is solved for the linear model. However, in 
wireless communications, the exponential model is more 
appropriate as suggested by Shannon’s channel capacity formula. 
Solution for the exponential cost model has only been given for the 

two-source case in [8]. In this paper, we address the problem for a 
general M-source case and propose a fast algorithm to search for 
the optimal rate point recursively. Compared to the conventional 
Lagrangian-multiplier approach, the proposed scheme reduces the 
computational complexity significantly. Simulation results 
demonstrate that significant power saving can be achieved using 
the proposed solution. 

The rest of the paper is organized as follows. The power-
efficient RA problem is formulated in Section 2. A fast water-
filling algorithm is proposed with its feasibility and optimality 
proved in Section 3. Simulation results are presented in Section 4. 
Section 5 concludes the paper. 

 
2. PROBLEM FORMULATION 

 
Let’s consider a set of sources X1, …, XM, each of which is i.i.d., 
takes values from a discrete alphabet and has a finite entropy. The 
sources are encoded separately in M different source nodes at rates 
R1, …, RM, respectively. The encoded bits are transmitted over a 
WSN to a sink node, where joint decoding is performed. Lossless 
reconstruction1 is possible iff the rate point (R1, …, RM) lies in the 
SW region defined by [9]: 
 | cR H X X  (1) 

for all   {1, …, M}, where 
 

kk
R R  (2) 

and X( ) = {Xk : k  }, X( c) = {Xk : k  }. For the sake of 
brevity, we also define IM = {1, …, M}.  

As we have mentioned, the most essential cost metric in a 
WSN is the power consumption. During the transmission, power 
consumption is needed not only at the source nodes but also at the 
intermediate nodes. We are interested in minimizing the overall 
cost of the entire WSN. 

In this paper, we assume the encoded bits are transmitted over 
a packet switching network using unicast, and packets are routed 
along the shortest path. That is, a data flow is formed between each 
sensor and the sink. We also assume that the transmissions of 
different data flows do not interact with each other. For example, 
two packets arriving at an intermediate node are neither assembled 
together, nor subject to any processing such as network coding. 
This is typically the case in WSN as the sensor nodes are not 
designed to be so powerful in functionality. In this scenario, the 
cost function can be modeled as the sum of costs to communicate 
between the sensors and the sink 
                                                                 
1 It is worth noting that practical SWC schemes based on channel 
coding are not strictly lossless. It only means the decoding error 
probability can be arbitrarily small. However, we will use 
“lossless” in this paper for simplicity. 
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where ck is a topology-dependent cost function. It is non-negative 
and non-decreasing in general. 

A good model for cost functions is established in [8] and 
summarized as follows. Let wk>0 be the weighting factor (which, 
e.g., may reflect the noise level or the fading factor of a wireless 
link) assigned to the shortest path from Xk to the receiver, then the 
multiple cost functions are unified in the form of 
 ck(R) = wk  c(R), for k = 1, …, M. (4) 
where c(.) depends only on the rate value. Two typical examples 
for c(R) are the linear cost model with c(R) = R for wired networks, 
and the exponential model with c(R) = exp(R) for wireless 
networks. With the linear cost model, the min-cost rate point can 
be easily found and the result is presented in [8]. However, with 
the exponential cost model, which is more typical in a WSN, the 
problem has not been completely solved and will be addressed in 
this paper. The problem is formulated as: given the SW region 
defined in (1), find the rate point R* in the SW region that 
minimizes the cost 
 

1
expM

k kk
C w R . (5) 

When M = 2, a closed-form solution is given in [8] using 
Lagrangian multipliers. One might want to extend the Lagrangian 
method to the more general case of M sources, but the 
computational complexity increases rapidly. In the next section, a 
novel approach is proposed to find the min-cost point in a 
recursive manner, based on a novel water-filling algorithm. The 
required complexity of this algorithm is much lower than the 
Lagrangian approach. 

 
3. LOW-COMPLEXITY RATE-ALLOCATION 

 
The SW region defined in (1) is the intersection of multiple half-
spaces, therefore it is convex (not strictly). On the other hand, (5)
defines a strictly-concave surface. Thus there is one and only one 
min-cost rate point R* in the SW region, and R* must lie on the 
boundary the SW region. That is, R* must satisfy at least one of the 
equalities in (1). The main idea of the proposed algorithm is 
summarized as follow. According to Corollary 1 presented in 
subsection 3.1, the equality R(IM) = H(X(IM)) must hold for R*. If 
none of the other equalities in (1) holds for R*, it is straightforward 
to apply Lagrangian multipliers and the complexity is low. 
However that is not always the case. R* might satisfy some other 
equalities in (1). If this happens, R* can be achieved by first 
applying SWC to a subset of the sources independently from 
others, then using them as side information to decode other sources. 
In other words, we can treat the M-source RA problem recursively 
and reduce the number of sources in each recursion. Now the 
problem is how to find a suitable subset of the sources while still 
being able to achieve the minimum cost. We will introduce a 
water-filling model for this purpose. 

 
3.1 A water-filling model for rate-allocation 

 
Water-filling model has been used in conventional source coding 
of multiple correlated sources [10]. Extensions and modifications 
are needed to fit the model for our problem. 

We use M tubes to represent the rate space of the M sources. 
We also introduce another 2M–1–M virtual tubes, each of which 
holds the sum of the rates of a certain subset of sources. The total 
2M–1 tubes represent the 2M–1 inequalities in (1). Now we can 

symbolize each tube by using a subset  of IM, and a lower bound 
is marked at tube  as in (1). Besides this lower bound, an upper 
bound is also defined for tube  as 
 R( )  H(X( )). (6) 

If the amount of water in a tube is less than the lower bound, 
we say there is an underflow; on the other hand if the amount of 
water in a tube is more than the upper bound, there is an overflow; 
when the amount of water equals the lower/upper bound, we say 
the tube is about to be underflowed/overflowed. A rate point is 
inside the SW region iff none of the tubes is underflowed.  

With the above water-filling model defined, we have the 
following proposition: 

Proposition 1: if a rate point is inside the SW region, and two 
tubes 1 and 2 are about to be underflowed simultaneously, then 
the tubes 1 2 and 1 2 are both about to be underflowed. 

Proof: By definition we have 
 

1 1 1 2 2 2| , |c cR H X X R H X X . (7) 

On the other hand, 

1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2 1 2 1 2| |

k kk k

k kk k

c c

R R R R

R R R R

H X X H X X

   (8) 
where the inequality is because the rate point is inside the SW 
region, so none of the tubes are underflowed. Combining (7) and 
(8), through some easy calculation based on the chain rule of 
conditional entropy, we have the following inequality: 
 

1 2 1 1 2 1 2\ | \ | ccH X X H X X . (9) 

where 1\ 2 is the set difference of 1 and 2. However, note that 
( 1 2)c  ( 1)c, the left-hand side of (9) is in fact no greater than 
the right-hand side (chain rule). Hence the equality in (9) holds, 
and so does it in (8), from which the conclusion is drawn. 

From Proposition 1 we know if a rate point is inside the SW 
region, we can find all the tubes that are about to be underflowed 
and derive the union of them, denoted as u. If u  IM, we can 
always find a source from IM\ u (so that none of the tubes 
containing this source is about to be underflowed), decrease its 
bitrate by a small amount and still keep the rate point inside the 
SW region, however the overall cost in (5) is reduced. Hence the 
following two corollaries are in place: 

Corollary 1: The min-cost point R* must have R(IM) = 
H(X(IM)). 

Proof: As shown above. Note that in this case, the tube IM is 
about to be underflowed, and also about to be overflowed. 

Corollary 2: The min-cost point R* must have none of its 
tubes overflowed. 

Proof: If a tube is overflowed, according to Corollary 1, its 
complementary tube is underflowed, meaning that R* is out of the 
SW region. 

Then the dual of Proposition 1 is stated: 
Proposition 2: If R* is the min-cost rate point, and two tubes 

1 and 2 are about to be overflowed simultaneously, then the 
tubes 1 2 and 1 2 are both about to be overflowed. 

Proof: Similar to that of Proposition 1. 
 

3.2 Rate-allocation algorithm based on the water-filling model 
 

2714



Now that we have established a water-filling model, we are in a 
position to describe an RA algorithm based on this model.  

According to Corollary 1, the total amount of water (rate 
budget) is R(IM) = H(X(IM)). We fill the water into the tubes as if 
the bit-rates are allocated. It is desirable that when the water is 
completely filled to the tubes, the obtained rate point is in the SW 
region with the minimum possible cost. 

Supposedly, at some point, we have allocated Ri to Xi and Rj 
to Xj. To increase one of them by an arbitrarily small amount of 
bit-rate R, one might introduce a cost increment of wiexp(Ri) R 
or wjexp(Rj) R. The allocation scheme should pick the smaller of 
them, until the cost increments being the same, i.e., when the 
following relationship holds: 
 lnwi + Ri = lnwj + Rj. (10) 
After that, Ri and Rj should be increased evenly until some tube is 
about to be overflowed.  

So the algorithm shall pre-fill the tubes to –lnw1, …, –lnwM, 
respectively (without loss of generality, suppose none of the tubes 
is overflowed at this time). After that we still have 

1
lnM

M kk
H X I w  rate budget in hand. Then we start to fill 

all the “real” tubes evenly, and we also keep close watch on both 
the real and the virtual tubes. The filling continues until an 
overflow is about to happen in a tube 0 ( 0 can always be found 
because finally the upper bound of IM will be reached). If there are 
multiple such tubes, we just randomly pick one. Then we state that 
the sources in 0 can be SWC coded at the curent bit-rates 
allocated to X( 0), without considering any other sources in IM\ 0. 
That is because for any subset  of 0, 

 0 0 0 0

0 0 0

\ \

\ | \

R R R H X R

H X H X H X X
,(11) 

where the inequality is because none of the subsets of 0 is 
overflowed ( 0 is the first to reach its upper bound). 

Now we can separate the M-source SWC into two phases: the 
sources in 0 are encoded and decoded among themselves first, 
and then used as side information to decode others (others are 
encoded as if they knew the sources in 0). This essentially 
reduces the problem to an (M – || 0||)-source case, where || 0|| 
denotes the cardinality of 0. The algorithm can be executed 
recursively until finally all the sources are coded. A more rigorous 
description of the algorithm is presented in the next subsection. 

 
3.3 Proof of the optimality 

 
From the previous subsection we know the RA algorithm based on 
the water-filling model always ends up with a rate point inside the 
SW region. However, it is not clear yet if this point is the min-cost 
point R*. This issue is addressed in the following. For the sake of 
brevity, in this subsection, we assume w1=w2=…=wM=1. 

We first have the following proposition: 
Proposition 3: The min-cost point R* must have each of its 

component rates Rk  , where 

 min
MI

H X . (12) 

where  denotes the empty set. 
Proof: If this is not true, without loss of generality, let R1 

 …  RN <   RN+1  …  RM, where 1  N  M. 
Now let’s consider RN+1. If we can reduce RN+1 by an 

arbitrarily small amount while still keeping the rate point inside 

the SW region, then R* cannot be the min-cost point. So some 
tube(s) containing XN+1 is about to be underflowed. Let N+1 be the 
intersection of all those tubes. We have the following observations 
on N+1: 
1) (N+1) N+1. 
2) N+1 is about to be underflowed (Proposition 1). 
3) N+1 IN = , where IN = {1, …, N}. Otherwise, for example, 
if 1 N+1, let’s consider replacing the pair (R1, RN+1) with (R1+ R, 
RN+1– R), where R is an arbitrarily small positive number. This 
operation still keeps the rate point inside the SW region2, but the 
overall cost is decreased: 
 exp(R1)+exp(RN+1) > exp(R1+ R)+exp(RN+1– R) (13) 
according to Jensen’s inequality (note that RN+1> R). This 
contradicts that R* is the min-cost point. So none of the sources in 
IN is in N+1. 

In the same way we define N+2, …, M. Now we consider 
the union of them:  = N+1 … M. Firstly, IN =  because 
none of N+1,…, M has a non-empty intersection with IN; secondly, 
{N+1, …, M}   because (N+1) N+1, etc. Combining the two 
facts we conclude that 
   = {N+1, …, M}. (14) 

According to Proposition 1,  is about to be underflowed, so 
its complementary, c = IN, is about to be overflowed. Thus 
 

N N NN R I H X I I N . (15) 

where the first inequality is because R1  …  RN < , the first 
equality is because IN (or c) is about to be overflowed, and the 
second inequality is from (12). Now we can see the contradiction, 
by which Proposition 3 is proved. 

Now the optimality of our algorithm is stated: 
Theorem 1: The RA algorithm based on the water-filling 

model result in the min-cost rate point R*. 
Proof: This can be proved by induction. If there is only one 

source, the statement is trivially true. If we assume that it is true 
for any m sources where m < M, then for the M-source case, in the 
water-filling algorithm, the first tube to be overflowed, 0, 
achieves the minimum in (12). At this time, Rk = H(X( 0))/|| 0|| = 
, for any k  0. According to Proposition 3, R* must have each 

of the component rate Rk  ; on the other hand, according to 
Corollary 2, R( 0)  H(X( 0)) = || 0||  is necessary. Consequently, 
the min-cost rate point R* must have Rk = , for any k  0, which 
is the same as the result in the water-filling algorithm. After that 
the problem is reduced to an (M – || 0||)-source case and is 
confirmed from the induction hypothesis. 

 
3.4 Summary of the Algorithm and Complexity Analysis 

 
The water-filling algorithm will be performed by the receiver node 
which is assumed less constrained by power than the source sensor 
nodes, and the results of the optimal rate allocation will be fed 
back to each source node for compression. The algorithm is 
summarized as follow: 
1) Let m = M, 1 = . 
2) Calculate the 2m – 1 entropy values H[X( )|X( 1)], where  

is any non-empty subset of IM\ 1. 

                                                                 
2  Increasing R1 does not affect any inequality in (1); and 
decreasing RN+1 may cause an about-to-underflow tube to be 
actually underflowed, but those tubes all contain R1, so the amount 
of water of each of those tubes is not changed. 
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3) Find  with the minimum {H[X( )|X( 1)] + j lnwj} / || ||, 
denote it as 0. 

4) Set Rk = {H[X( )|X( 1)] + j lnwj} / || 0|| – lnwk to each Xk 
for all k 0. 

5) Set m  m–|| 0||, 1  1 0. If m = 0, end the recursion; 
otherwise go to 2) and continue. 

Theorem 2: The complexity of the water-filling algorithm is 
O(2M). 

In each recursion, the complexity is O(2m). In the worst case 
the size of m is reduced by 1 every time. That gives us an overall 
complexity of O(2M + 2M–1 + … + 21) = O(2M). 

As a comparison, the optimal rate point can also be found by 
using the Lagrangian multipliers. Since there are 2M – 1 inequality 
constraints in (1), the optimal point can be found by exhaustively 
searching over any combination of them, which leads to a 
complexity of 22

M

O . Although the search can be refined if the 

geometrical description of the SW region is known, it is not likely 
that the refinement can reduce the complexity to O(2M). And to our 
best knowledge, the geometrical description of a SW region for 
more than 3 sources has never been discussed in the literature. 

 
SIMULATIONS 

 
In this simulation, three zero-mean jointly-Gaussian sources are 
generated with the covariance matrix: 

 
1 0.9 0.9

Cov 0.9 1 0.9
0.9 0.9 1

. (16) 

The discrete sources {X1, X2, X3} are generated by uniformly 
quantizing the Gaussian sources using a step-size of 0.1. The test 
set contains 106 samples. The path weights are assumed to be w1 = 
1, w2 = exp(1) and w3 = exp(2). 

We calculate the entropies / conditional entropies of the 
sources from the differential entropy using the same method as in 
[8]. Then the 3-D SW region is illustrated in Fig. 1(a). We can see 
that the minimum sum-of-rate plane R1+R2+R3 = H(X1X2X3) is a 
hexagon in the SW region. We are particularly interested in the 
cost performance of the rate-points in the hexagon given Corollary 
1. The hexagon is projected to the R1R2 plane in Fig. 1(b) (the 
rectangular region sliced by two oblique lines). The cost 
 

1 1 2 2 3 1 2 3 1 2exp exp exp ( )C w R w R w H X X X R R  

  (17) 
is densely sampled inside the region and the contour lines are 
drawn. The min-cost rate point is found numerically at R1 = 5.27, 
R2 = 4.27 (and R3 = 3.96). 

On the other hand, if we apply the water-filling algorithm, the 
tube (R1 + R2) is the 1st to be overflowed, then R1 = (H(X1X2) + 
lnw1 + lnw2)/2 – lnw1 = 5.27,  R2 = (H(X1X2) + lnw1 + lnw2)/2 – 
lnw2 = 4.27 are found; the only remaining source X3 is coded at the 
rate R3 = H(X3|X1X2) = 3.96. This result matches the numerical 
result and supports the optimality of our algorithm. 

At the optimal rate point, the cost is 7.76 102. As a 
comparison, the mean cost inside the hexagon is 1.08 103. This 
means, instead of randomly picking a point in the SW region with 
the minimum sum-of-rate constraint, working at the optimal rate 
point achieves roughly 30% saving in power consumption on 
average. 

 

CONCLUSION 
 

In the SWC of multiple correlated sources, careful rate allocation 
among the sources can achieve the minimum overall power 
consumption in the communication over a WSN. If we model the 
cost metric as the weighted sum of exp(rate) of the multiple 
sources, the optimal rate point can be found using a recursive 
water-filling algorithm, which results in significant reduction in 
computational complexity in comparison to the conventional 
approach using the Lagrangian multipliers. Future work will 
include jointly considering the quantizer design and the rate-
allocation to achieve the best cost-distortion tradeoff. 
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Fig. 1: (a) The SW rate region of 3 sources. The white hexagon is 
the minimum sum-of-rate plane; and (b) the hexagon is projected 
to the R1R2 plane, with the cost contours illustrated. The min-cost 
rate-point is marked with a circle. 
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