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Abstract—A successive interference cancellation (SIC) algo-
rithm based on breadth-first search (BFS) is developed to achieve
a soft-input soft-output detector via the tree structure of the
MIMO system model in this paper. Instead of visiting all nodes
of the tree, the proposed BFS-SIC algorithm only browses and
extends those paths with large metrics. If paths are enough, the
performance of BFS-SIC algorithm can approach that of sphere
decoding but is much more flexible due to its providing a good
tradeoff between complexity and performance. Moreover, the
BFS-SIC algorithm possesses path metrics including only scalar
operations rather than matrix operations. Simulation results
demonstrate the effectiveness of the proposed algorithm.

Index Terms—Multiple input multiple output (MIMO), succes-
sive interference cancellation (SIC), breadth-first search (BFS),
tree structure

I. INTRODUCTION

Spatial multiplexing (SM) schemes of multiple-input

multiple-output systems (MIMO) provides a linear increased

capacity with no additional power expenditure [1]. Detection

algorithms for SM schemes have been extensively studied in

the literatures, such as sphere decoding (SD) [2]–[4], ordered

successive cancellation (SIC) [5], M -algorithm [6] and the

List-Sequential (LISS) algorithm [7].

Most detection algorithms can be classified as tree search

decoding [8]. The well known SD algorithm computes the

maximum-likelihood symbol estimate antenna by antenna as

an integer least-squares problem [3], [4]. From the view of

intelligent search theory, SD is in fact a type of depth-

first search (DFS) with heuristic knowledge regarding the

transmitted antennas as the levels of a tree. The most probable

symbol of the next level is firstly extended as the offspring

node of the current level if the symbol is in a hypersphere, or

else remounts to its parent node. The drawback of SD is the

exponential complexity particularly in the low signal-to-noise

ratio (SNR) region due to the incessant retrospect among the

levels.

In order to avoid the variational complexity of SD, a soft-

input soft-output (SISO) algorithm, called SGA algorithm, is

developed with a fixed complexity [9]. By using the output of
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decorrelator, it sequentially calculates the posterior distribution

by some symbol combinations with the largest probability

metrics. If the number of symbol combinations is large

enough, SGA is near-optimum and can achieve a comparable

performance with SD. However, the computational load of

SGA is too huge to be implemented in real applications.

Technical speaking, SGA is actually a kind of M -algorithm

which is an example of heuristic breadth-first search (BFS).

BFS algorithms are naturally suitable for SISO framework.

Moreover, its complexity usually remains constant indepen-

dent of the channel conditions. In this paper, we propose a

novel BFS-based algorithm via QR decomposition and SIC.

The BFS-SIC algorithm possesses a near optimal performance

but has significant complexity saving comparing to SD and

SGA algorithm.

This paper is organized as follows. Section II describes

the signal model of MIMO system and its tree structure.

Section III provides the basic algorithm of BFS-SIC and some

comparison with SGA. In section IV, simulation results are

described to demonstrate the effectiveness of the proposed

BFS-SIC algorithm. Finally, a brief conclusion is given in

section V.

II. SYSTEM DESCRIPTION

A. Signal Model

Consider an MIMO system with nT transmit antennas and

nR receive antennas (nT ≤ nR) in a rich scattering flat fading

environment. The input-output relation of SM scheme can be

put in the form of the linear signal model

r = Hs + v (1)

where s � [s1, · · · , snT
]T is a transmitted vector whose en-

tries are chosen from a finite alphabet set A = {a1, · · · , aN},

r � [r1, · · · , rnR
]T is a received vector, H is an nR×nT com-

plex fading channel matrix known perfectly to the receiver, and

v ∼ Nc(0, σ2I) is a zeros-mean complex circular symmetric

Gaussian noise vector with I denoting the identity matrix of

appropriate dimension. To simplify the narration, we assume

that QAM is employed in this paper.
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For a squared QAM signal set, an equivalent form of the

model (1) can be expressed in a real matrix form as

y = Bx + w (2)

where y = [Re(rT ), Im(rT )]T , x = [Re(sT ), Im(sT )]T and

w = [Re(vT ), Im(vT )]T are ñR × 1, ñT × 1 and ñR × 1 real

vectors, and

B =

[
Re(H) −Im(H)
Im(H) Re(H)

]
is a ñR×ñT real matrix with ñT = 2nT and ñR = 2nR. Note

that the entries of vector x are taken from a pulse amplitude

modulation (PAM) signal set X = {ui = 2i − 1 − M, i =
1, 2, · · · ,M} with M =

√
N for the squared QAM [10].

Denoting the QR decomposition B � QR with the orthog-

onal matrix Q ∈ R
ñR×ñR and the upper trapezoidal matrix

R ∈ R
ñR×ñT , there exists a unique factorization B = Q̃R̃

where Q̃ and R̃ are submatrices of Q and R given respectively

by Q̃ = Q(1 : ñR, 1 : ñT ) and R̃ = R(1 : ñT , 1 : ñT ). Based

on the reduced QR decomposition, the signal model (2) can

be rewritten as⎡⎢⎢⎣
ỹ1

...

ỹñT

⎤⎥⎥⎦
︸ ︷︷ ︸

ỹ

=

⎡⎢⎢⎣
r11 · · · r1ñT

. . .
...

rñT ñT

⎤⎥⎥⎦
︸ ︷︷ ︸

R̃

⎡⎢⎢⎣
x1

...

xñT

⎤⎥⎥⎦
︸ ︷︷ ︸

x

+

⎡⎢⎢⎣
w̃1

...

w̃ñT

⎤⎥⎥⎦
︸ ︷︷ ︸

w̃
(3)

where ỹ = Q̃
H

y and w̃ = Q̃
H

w ∼ Nc(0, σ2I). Note that

QR decomposition is inefficiency when B is ill-conditioned.

Some preprocessing approaches in [8] can tackle this problem

and lead to much more efficient decoding algorithms but the

detail discussion falls outside the scope of this paper.

According to the model (3), the objective of SM receiver

is to make Bayesian inference from the received vector ỹ and

estimate the symbols of each transmit antenna. In other words,

it evaluates the marginal posterior distributions p(xk|ỹ) by

summarizing M ñT −1 possible values of x given by ỹ,

p(xk|ỹ) =
∑
x/k

p(x|ỹ), (4)

where x/k is the transmitted vector except the k-th antenna.

The sum in (4) is prohibitive when a large number of transmit

antennas or mutlilevel/phase modulation is employed.

B. Tree Structure

Fortunately, thanks to the upper triangular structure of R̃
in the signal model (3), the transmitted vector x can be

expressed as paths in a tree of depth ñT , where the estimation

is performed in accordance with the inverse order of x.

Tree search strategies in the literature can be classified into

BFS (e.g. M -algorithm, SGA), DFS (e.g. SD) and Best-First

search (e.g. stack algorithm) [8]. In general, BFS naturally

adapts to SISO structure which is suitable for acting as a

detector in turbo receiver. Moreover, the complexity of BFS

usually remains constant independent of variations in SNR

and channel conditions. In this paper, we develop a novel low-

complexity BFS algorithm with adaptive updating the metrics.

III. BFS-SIC ALGORITHM

A. Basic Algorithm
BFS visits all possible symbols of a level and computes

their probabilities given their ancestor nodes before moving

to the next level. This process carries out from the root to the

last level and finally chooses the most probable path as the

optimal estimate of x. However, the exhaustive search makes

the original BFS infeasible in MIMO systems. Being aware

that only a few paths dominate the posterior distribution, we

select J nodes in each level, whose corresponding J paths

have the largest probabilities, to limit the computational load.

That is to say, according to the model (3), the probability

metric of the j-th path α
(j)
k (j = 1, · · · , J) at the k-th

transmitted antenna is given by

α
(j)
k = p(xk, x

(j)
k+1:ñT

|ỹk:ñT
)

∝ p(ỹk:ñT
|xk, x

(j)
k+1:ñT

)p(x(j)
k+1:ñT

, xk)

= α
(j)
k+1 · p(ỹk|x(j)

k+1:ñT
, xk)p(xk)

∝ α
(j)
k+1 · exp

{
− 1

σ2

∣∣∣z̃(j)
k − rkkxk

∣∣∣2} p(xk) (5)

where x
(j)
k+1:ñT

� {x(j)
k+1, · · · , x

(j)
ñT

}, ỹk:ñT
� {ỹk, · · · , ỹñT

}
and z̃

(j)
k � ỹk − ∑ñT

l=k+1 rklx
(j)
l . From (5), we acquire NJ

candidate metrics (corresponding to NJ nodes) for the k-th

transmit antenna (corresponding to the (ñT − k + 1)-th level

of the tree). As mentioned above, J of them are selected and

affiliated to their respective paths before the next level is taken

into account. Of particular note is the sequential form of the

metric calculation from the last antenna to the first one by

reason of R̃ being an upper diagonal matrix. Moreover, the

expense of (5) is very low due to the scalar computing.
After the last level is processed, J full probability metrics,

α(j) � α
(j)
1 = p(x(j)

1:ñT
|ỹ1:ñT

), j = 1, · · · , J , are obtained for

J paths. The marginal posterior probability p(xk|ỹ) in (4) can

be further computed by using the generated paths as follows

P (xk = ui|ỹ) =
J∑

j=1

P
(
xk = ui,x

(j)
/k |ỹ

)

∝
J∑

j=1

exp
(
− 1

σ2

∥∥∥ỹ − Rx
(j)
k,i

∥∥∥2
)

× P (xk = ui)
∏
l �=k

P
(
xl = x

(j)
l

)
(6)

where x
(j)
k,i = [x(j)

1 , · · · , x
(j)
k−1, ui, x

(j)
k+1, · · · , x

(j)
ñT

]T . In addi-

tion, the hard output can be also obtained by either the MAP

estimate from (6) or computing

x̂k = min
xk∈X

|xk −
J∑

j=1

α(j)x
(j)
k |2, k = 1, · · · , ñT (7)

for simplicity.
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B. Algorithm Summary

To summarize, the proposed BFS-SIC algorithm for MIMO

systems is given below.

1) Initialization:

• Execute the reduced QR decomposition using B =
Q̃R̃ and calculate ỹ = Q̃

H
y.

• For k = ñT and xñT
∈ X , compute

βñT ,i = exp
{
− 1

σ2
|ỹñT

− rñT ñT
ui|2

}
× P (xñT

= ui). (8)

Let {α(j)
ñT

}J1
j=1 be the largest J1 = min{J,N} ele-

ments of {βñT ,i}N
i=1. The corresponding J1 symbols

form the path set {x(j)
ñT

}J1
j=1.

2) For k = ñT − 1, · · · , 1, do the following operations:

• For j = 1, · · · , J1 and xk ∈ X , compute

β
(j)
k,i = α

(j)
k+1 · exp

{
− 1

σ2

∣∣∣z̃(j)
k − rkkui

∣∣∣2}
× P (xk = ui). (9)

• Let {α(j)
k }J2

j=1 be the largest J2 =
min{J,N ñT −k+1} elements of {β(j)

k,i}N,J1
i=1,j=1.

The corresponding J2 symbols form the path set

{x(j)
k:ñT

}J2
j=1.

• Set J1 = J2.

3) Calculate the marginal posterior probabilities.

• Supposing that the normalized probability metrics

α(j) = α
(j)
1 , j = 1, · · · , J are in descent order, we

construct the cumulative distribution function (CDF)

as follows.

– Initialize the CDF: c0 = 0 and m = 0.

– While cm � δ, do

∗ m = m + 1.

∗ cm = cm−1 + α(m).

• Perform (6) to obtain the marginal posterior proba-

bilities or (7) to obtain the hard output except that

the sum is from j = 1 to m.

Remark 1: In step 3), since only a few paths or candidate

vectors in {x(j)}J
j=1 dominate the posteriori distribution, it is

possible to select only m paths with the largest probability

metrics to calculate (6), which significantly reduces the whole

computational load.

Remark 2: The BFS-SIC algorithm is somewhat similar to

the M -algorithm in [6] and the SGA algorithm in [9] because

they both employ the breadth-first search strategy by extending

the most possible paths first and then selecting those with the

largest metrics. However, there are following three differences

between them:

• The metrics for each possible symbol combinations in M -

algorithm and SGA involve matrix computations whereas,

as shown in (5), only scalar computations are required in

BFS-SIC due to its adaptive updating of α
(j)
k .

10 12 14 16 18 20 22 24
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

MMSE
BFS−SIC (J=20)
BFS−SIC (J=50)
BFS−SIC (J=100)
SGA (L=10)
SGA (L=20)
Sphere Decoding

Fig. 1. BER performance of MMSE, BFS-SIC, SGA and sphere decoding
algorithm in an uncoded 8 × 8 MIMO system with 16-QAM.

• SGA operates on the QAM alphabet set and hence its

complexity is O(nT JN) for recursions. On the other

hand, the complexity of BFS-SIC is O(2nT J
√

N) due to

the operation on the PAM signal set, which greatly speeds

up the algorithm. For example, the complexity of BFS-

SIC is only half of that of SGA with 16-QAM. In M -

algorightm, multilevel bit mapping (MBM) technique is

employed to reduce the complexity by partition the QAM

constellation. The complexity of M -algorithm is roughly

O(2nT J log2 N) without considering its complexity of

metric updates. Actually, the key idea of MBM is to

consider a constellation as a tree and constellation points

as its leaf nodes, which can be used in not only QAM

but also PAM. In other words, by appropriately partition

the bit pairs of PAM points, BFS-SIC can also achieve

the same number of recursions as M -algorithm.

• SGA intends to use all J paths to estimate the marginal

posterior distributions whereas BFS-SIC only browses a

very small part of them by computing the CDF especially

in high SNR region.

Remark 3: The BFS-SIC algorithm is constructed in a SISO

manner and hence can be easily embedded into iterative (turbo)

receiver.

IV. NUMERICAL RESULTS

In this section, we demonstrate the performance of BFS-

SIC in an 8 × 8 MIMO system with 16-QAM modulation

by comparing to the sphere decoder in [4], [12], SGA in [9]

and conventional MMSE detector. The elements of channel

matrix H are i.i.d complex Gaussian random variables, i.e.

hk,p ∼ Nc(0, 1/nT ). In the simulation, SNR is defined as

E{‖Hs‖2}/E{‖v‖2} = σ2
s/σ2 where σ2

s is the variance of

the QAM alphabet set A.

Above all, we demonstrated the performance of different

detectors in both uncoded system and coded system. The

path numbers are J = 20, 50, 100 and the threshold δ is set
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Fig. 2. BER performance of BFS-SIC, SGA and sphere decoding algorithm
in a coded 8×8 MIMO systems with 16-QAM. Rate-1/2 constraint length-5
convolutional code is used.

to be 0.99 in BFS-SIC. For comparison, the path numbers

are L = 5, 10, 20 in SGA. For a coded MIMO system,

a rate 1/2 convolutional code with constraint length 5 and

generator (23, 35) in octal form is employed. The coded bits

are random interleaved and then mapped by QAM modulation.

Although both BFS-SIC and SGA are designed in SISO

manner, we assume no iterations between the detector and

the convolutional decoder in the receiver, and only the hard

decisions of the detector are fed to the convolutional decoder.

Fig. 1 and Fig. 2 show the bit error ratio (BER) performance

of detectors in uncoded system and coded system respectively.

It is seen that the more the path number is, the more accurate

estimates of transmitted bits are. No obvious difference can be

aware among BFS-SIC with J = 100, SGA with L = 20 and

sphere decoding in an uncoded MIMO system. However, in a

coded system, there is a gap between BFS-SIC and SGA. The

performance of BFS-SIC with J = 50 is as good as sphere

decoding algorithm and is even superior to that of SGA with

L = 20.

Next, we describe the complexity comparison between BFS-

SIC and SGA. As in [11], the average complexity exponent

γ = log(average number of flops)/log ñT

is used as a measure for complexity where the flops are aver-

aged over 2000 runs in the simulations. Since the complexity

of Max-log-MAP sphere decoder [12] is much larger than that

of SGA, as reported in [9], its complexity is not included

in the comparison. In Fig. 3, the complexity of BFS-SIC

with J = 100 is apparently only 30% of that of SGA with

L = 20 although they can all approach the near optimum

BER performance. Note that if only consider the hard decision

of detector, DFS such as SD algorithms in [4] have a lower

average complexity than BFS [8].

10 12 14 16 18 20 22 24
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

A
ve

ra
ge

 c
om

pl
ex

ity
 e

xp
on

en
t

γ

SNR (dB)

BFS−SIC (J=20)
BFS−SIC (J=50)
BFS−SIC (J=100)
SGA (L=5)
SGA (L=10)
SGA (L=20)

Fig. 3. The average complexity of BFS-SIC and SGA in an uncoded 8× 8
MIMO system with 16-QAM.

V. CONCLUSION

Following the search algorithm, this paper developed a BFS-

SIC algorithm for MIMO systems which utilizes the tree

structure of the signal model after QR decomposition and then

employs a breadth-first search to generate multiple paths for

the computation of marginal posterior distribution. Thanks to

the scalar form of path metrics and some considerations for

limit search, BFS-SIC has much lower complexity than SGA

and maintains near optimum BER performance.
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