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ABSTRACT

The performance and complexity of two complex lattice reduction
(LR) algorithms used in multiple input-multiple output (MIMO) de-
tection are compared in this paper. The Seysen’s Algorithm (SA)
has been previously proposed as a low-complexity alternative to the
real version of the Lenstra-Lenstra-Lovász (LLL) algorithm while
providing a better performance in LR-aided linear detectors. How-
ever, this paper shows that the SA has a higher complexity than the
complex version of the LLL algorithm, due to its more computa-
tionally intensive preprocessing stage and its higher complexity per
iteration. In addition, both the SA and the complex LLL algorithm
provide practically the same performance when used in LR-aided
successive interference cancellation (SIC) detectors.

Index Terms— lattice reduction, MIMO, LLL algorithm, Sey-
sen’s algorithm.

1. INTRODUCTION

In the context of uncoded detection of spatially multiplexed multi-
ple input-multiple output (MIMO) systems, low-complexity linear
and SIC detectors fail to achieve the diversity of the optimal max-
imum likelihood detector (MLD), resulting in a sub-optimal per-
formance [1]. In order to overcome that problem, lattice reduction
(LR)-aided detection has been recently proposed, where LR tech-
niques are used to transform the MIMO channel into a more orthog-
onal equivalent MIMO channel [2]. Linear or SIC detectors can then
be applied to this equivalent channel providing an improved perfor-
mance [3]. In particular, it has been shown that LR-aided detectors
achieve the same diversity as the MLD [4].

A number of LR methods exist in the literature with different
levels of performance and complexity [5]. The optimal Korkine-
Zolotareff (KZ) algorithm has the drawback of an exponential com-
plexity, limiting its practical application [5]. As an alternative, the
more popular Lenstra-Lenstra-Lovász (LLL) algorithm can approx-
imate the performance of the KZ algorithm while having a polyno-
mial complexity [6]. For that reason, the LLL algorithm has been
considered, almost exclusively, for real and complex LR-aided de-
tectors [7] -[9]. Recently, the Seysen’s Algorithm (SA), originally
proposed in [10], [11], has been presented as an alternative to the
LLL algorithm for MIMO detection [12]. It results in a LR-aided
linear detector with better performance than the LLL counterpart
and requires less iterations per LR than the real LLL algorithm [12].
However, this paper shows that the SA has a higher complexity than
the LLL algorithm, especially if the complex LLL is considered [9].
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This is due to the overhead required in the SA and the higher com-
plexity per iteration compared to the LLL algorithm. In addition,
this paper shows that the improved performance of SA-aided linear
detectors compared to LLL-aided ones disappears if successive in-
terference cancellation (SIC) detectors are used.

1.1. Lattice Reduction-Aided Detection

We consider a spatially-multiplexed MIMO system with M transmit
and N receive antennas, denoted as M ×N . The vector of received
symbols y ∈ C

N×1 can be modelled as

y = Hs + v , (1)

where s ∈ C
M×1 denotes the vector of transmitted symbols taken

independently from a quadrature amplitude modulation (QAM) con-
stellation O of P points with E[|si|

2] = 1/M , for 1 ≤ i ≤ M , and
where v ∈ C

N×1 is the vector of independent complex Gaussian
noise samples vi ∼ CN (0, σ2), for 1 ≤ i ≤ M . The channel ma-
trix H ∈ C

N×M has independent elements hj,i ∼ CN (0, 1), for
1 ≤ j ≤ N and 1 ≤ i ≤ M , representing a wireless propagation
environment with uncorrelated Rayleigh fading. We assume that the
channel is perfectly known at the receiver and that N ≥ M .

The columns of the channel matrix H in (1), hi for 1 ≤ i ≤
M , can be seen as a generator basis of an M -dimensional complex
lattice L(H) ∈ C

N×1, where the lattice is defined as all complex
integer combinations of the generator basis, i.e.

L(H) �

{
Hz =

M∑
i=1

hizi | zi ∈ CZ for 1 ≤ i ≤ M
}

.

We concentrate our analysis on the complex lattice interpretation of
the system, as opposed to the more common real one, since the SA
is applied directly to the complex lattice and the complex LLL algo-
rithm results in a lower complexity compared to the real LLL algo-
rithm [8].

The main idea behind LR-aided detectors is to obtain a reduced
(i.e. more orthogonal) generator basis H̃ for the same lattice L in
order to improve the performance of sub-optimal detectors [2]. Two
matrices H and H̃ generate the same lattice, L(H) = L(H̃), if they
can be written as H̃ = HT, where T ∈ CZ

M×M is a unimodular
matrix with determinant det(T) = ±1 [5]. The system model in (1)
can then be rewritten as

y = H̃x + v , (2)

where x = T−1s. Thus, sub-optimal detectors can be applied ini-
tially to (2) in order to obtain an estimate of x, x̂, before calculat-
ing an estimate of the transmitted vector s, ŝ, using the relationship
s = Tx. A detailed description of the operation of LR-aided detec-
tors can be found in [7].
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2. COMPLEX LATTICE REDUCTION ALGORITHMS

This Section briefly describes the main aspects of the LLL algorithm
and the SA applied directly to the complex system defined in (1).

2.1. LLL Algorithm

The LLL algorithm transforms an input basis H = QR into a LLL-
reduced basis H̃ = Q̃R̃ that satisfies

|�(r̃l,k)| , |�(r̃l,k)| ≤
1

2
|r̃l,l| for 1 ≤ l < k ≤ M (3)

and

δ|r̃k−1,k−1|
2 ≤ |r̃k,k|

2 + |r̃k−1,k|
2 for 2 ≤ k ≤ M , (4)

where r̃l,k, for 1 ≤ l, k ≤ M , are the elements of R̃ and the param-
eter δ, assumed to be δ = 3/4 as in [6], determines the speed of the
algorithm and the quality of the reduced basis.

With the initialization Q̃ = Q, R̃ = R and T = I, the al-
gorithm performs a series of iterations starting from k = 2 until
k = M and (3) and (4) are satisfied. The output of the algorithm is
then given by the updated Q̃, R̃ and T. The following two steps are
performed in each iteration:

1. A number of basis reduction operations, as detailed in [9], are
performed for 1 ≤ l < k if (3) is not satisfied.

2. Columns r̃k and r̃k−1 are swapped (with Givens rotations), as
detailed in [9], if (4) is not satisfied and k ← max(k − 1, 2).
If (4) is satisfied, no swapping occurs and k ← k+1. In both
cases, the algorithm returns to step 1.

Given that the complexity of the LLL algorithm depends greatly
on the number of column exchanges, that can be reduced by using a
sorted version of the QR decomposition (SQR) that iteratively min-
imizes the diagonal elements of R [7]. This version of the LLL
algorithm is denoted as sorted-LLL (SLLL) in this paper.

2.2. Seysen’s Algorithm

The SA consists of obtaining a SA-reduced basis H̃ by simultane-
ously reducing the original basis H and a basis Hd of the dual lattice
Ld, where Hd = H(HHH)−1 [11]. The reduced basis H̃ and H̃d

satisfy 1

λi,j �	αi,j
=

⌊
1

2

(
g̃d

j,i

g̃d
i,i

−
g̃j,i

g̃j,j

)⌉
= 0 for 1 ≤ i �=j ≤ M, (5)

where 	·
 denotes rounding to the next integer and g̃i,j and g̃d
i,j ,

for 1 ≤ i, j ≤ M , are the elements of G̃ = H̃HH̃ and G̃d =
H̃dHH̃d, respectively. When (5) is satisfied, the SA has found a
local minimum of the Seysen’s orthogonality measure, defined in
(2.2) in [11].

With the initialization H̃ = H, H̃d = Hd and T = I, the SA
performs a series of iterations until (5) is satisfied. In each iteration,
taking into account that 1 ≤ i �= j ≤ M , the following steps are
performed:

1. Initially, the values λi,j are calculated. The SA terminates
if λi,j = 0 for all i, j, giving the updated H̃, H̃d and T as
output.

1
H̃ is used to denote both an SA-reduced and an LLL-reduced basis to

simplify the notation.

2. An index pair (k, l) is selected according to [12]

(k, l) = arg max
(i,j)

2 g̃j,j g̃d
i,i (2�(λ∗i,jαi,j) − |λi,j |

2). (6)

3. The k-th columns of H̃ and T and the l-th column of H̃d are
updated using

h̃k = h̃k + λk,lh̃l ; tk = tk + λk,ltl ; h̃
d
l = h̃

d
l − λ∗k,lh̃

d
k .

4. According to step 2, the corresponding values of G̃ and G̃d

are updated as detailed in [12]. The algorithm returns to step 1
where only the values λi,j corresponding to updated elements
of G̃ and G̃d need to be calculated.

The SA has been shown to provide an improved performance
compared to the LLL algorithm when applied to LR-aided linear de-
tectors [12]. Although it has been claimed to have lower complexity
than the LLL algorithm, only the number of basis updates in the
SA (steps 3 and 4 above) and the number of column exchanges in
the LLL algorithm have been compared [12]. Instead, the next two
Sections look at the total number of operations of both algorithms,
indicating that the SA has a higher complexity than the LLL algo-
rithm.

3. COMPUTATIONAL COMPLEXITY

This Section looks at the computational complexity in number of
real operations of the two LR algorithms in order to obtain some
insight into their relative complexity 2. The complexity of both algo-
rithms can be divided between the complexity of the preprocessing
stage (i.e. input generation) and the complexity of the algorithm
stage. Although both outputs are different, it can be assumed, for
simplicity, that the use of Q̃/R̃ or H̃d results in the same complex-
ity for the MIMO detectors.

3.1. LLL Algorithm

Firstly, the preprocessing stage performs a QR decomposition of
H, or a SQR decomposition if the SLLL is used [7]. Consider-
ing the modified Gram-Schmidt (MGS) algorithm [13], the num-
ber of operations required by the QR and the SQR decomposi-
tion are NQR = 8NM2 − 2NM − M2 + M and NSQR =
10NM2 − 4NM − 1.5M2 + 1.5M , respectively. The SQR de-
composition results in a slight increase in complexity that can be
reduced, at the expense of a minor performance degradation, if a dif-
ferent sorting is used [8]. Secondly, the complexity of each iteration
of the algorithm stage can be divided between the complexity of the
two steps defined in Section 2.1:

1. The number of operations required for the basis reductions
of step 1 depends on the number of times that (3) is not
satisfied [9]. However, an upper bound, not tight, can be
found if we consider k = M and (3) not satisfied for all
1 ≤ l < M . Thus, the number of operations of step 1 can be
upper bounded by NLLL−1 ≤ 18M − 10.

2. The number of operations required for the column exchange
of step 2 depends on the index k [9]. Again, an upper
bound can be found considering k = 2, yielding NLLL−2 ≤
28(N + M) + 16.

2We consider that a complex product requires 4 real products and 2 real
additions; a complex addition requires 2 real additions; a complex by com-
plex division requires 6 real products, 3 real additions and 2 real divisions;
and a complex by real division requires 2 real divisions.
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Fig. 1. a) Average total number of operations and b) average number
of operations of the algorithm stage of the LLL, SLLL and SA as a
function of the number of antennas N = M .

Looking at the two upper bounds, it can be seen that the com-
plexity of the algorithm stage is linear with M as indicated in [12].
However, the overall complexity depends on the number of itera-
tions performed, which cannot be easily characterized given that k
can be either incremented or decremented in step 2. Thus, we resort
to simulations to evaluate the overall complexity in Section 4.

3.2. Seysen’s Algorithm

Firstly, the preprocessing stage in this case needs to calculate the
basis Hd and the initial values of G̃ and G̃d, therefore, two ma-
trix multiplications and a matrix inversion are required. Assum-
ing a matrix inversion through Gaussian elimination [13], the num-
ber of operations of the preprocessing stage is given by NSA−0 =
16NM2 + 8M3 − 2NM − M2 − 10M + 6. Thus, the SA has a
higher preprocessing complexity than the LLL algorithm. Secondly,
the complexity of each iteration of the algorithm stage can be divided
between the complexity of the four steps defined in Section 2.2:

1. The number of operations required in step 1 is NSA−1 =
8(M2 − M) in the first iteration and down to NSA−1 =
32(M − 1) in the following iterations, given that only the
λi,j corresponding to updated elements of G̃ and G̃d need to
be calculated [12].

2. Equivalently, and without considering the max search, the
number of operations required in step 2 is NSA−2 ≤
10(M2 − M) in the first iteration and down to NSA−2 ≤
40(M − 1) in the following iterations, since only the terms
in (6) where λi,j �= 0 need to be calculated [12].

3. The number of operations required in step 3 is NSA−3 =
16N + 8M .

4. Finally, the number of operations required in step 4 is
NSA−4 = 24M − 18 [12].

The complexity per iteration is also linear with M , except in the
first iteration. However, looking at one full iteration, the number of
operations in the LLL algorithm is NLLL−it ≤ 28N + 46M + 6
while the number of operations in the SA is, at best, 16N + 64M −
50 ≤ NSA−it ≤ 16N + 104M − 90. Thus, unless N � M , only
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Fig. 2. a) CDFs of the number of column exchanges in LLL-based
algorithms and the number of basis updates in the SA and b) CDFs
of the total number of operations of the LLL, SLLL, SA and real
LLL in an 8 × 8 system.

in the case where the number of column exchanges in the LLL is
considerably larger than the number of basis updates in the SA, can
the SA have a lower algorithm complexity than the LLL algorithm.
Next Section shows that this is not the case in practice, limiting, in
principle, the relevance of the SA as a low-complexity alternative to
the LLL algorithm.

4. SIMULATION RESULTS

The complexity and performance of both LR algorithms is studied
in this Section through Monte-Carlo simulations. Fig. 1-a) shows
the average overall number of real operations of the algorithms as a
function of the number of antennas M = N . Furthermore, given
that the higher complexity of the preprocessing stage for the SA can
mask the relative complexity of the algorithm stages, Fig. 1-b) shows
the average complexity of the algorithm stage. It can be seen how the
LLL and SLLL algorithms have a significantly lower average com-
plexity as the number of antennas increase. Even though the SLLL
algorithm has an increased preprocessing complexity compared to
the LLL algorithm, that effect is compensated for by the reduction
in complexity in the SLLL algorithm stage.

Fig. 2-a) shows the cumulative distribution functions (CDFs) of
the number of column exchanges in the LLL-based algorithms and
the number of basis updates in the SA in an 8×8 system. As in [12],
it can be observed that the SA has a lower number of basis updates

compared to the number of column exchanges of the real LLL algo-
rithm. However, that is not the case when the complex LLL or SLLL
are considered. Fig. 2-b) shows the CDFs of the total complexity of
the algorithms. The only qualitative difference compared to Fig. 2-a)
is the fact that the real LLL algorithm also has a lower complexity
than the SA Thus, the complex SLLL algorithm presents the low-
est complexity of the algorithms under study while the SA has the
highest complexity. It should be noted that this conclusion is based
solely on the evaluation of the number of real operations. Given the
algorithmic differences between the LLL algorithm and the SA, a
hardware implementation would be required to establish their exact
relative complexities, since both LR algorithms are likely to result in
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Fig. 3. BER performance of LR-aided a) linear detectors and b) SIC
detectors as a function of the SNR per bit in a 6 × 6 system with
4-QAM.

very different hardware architectures.
Fig. 3 and Fig. 4 show the bit error rate (BER) performance of

LR-aided detectors in a 6×6 and an 8×8 system, respectively, with
4-QAM as a function of the SNR per bit Eb/N0 = log−1

2 (P )/σ2.
It can be seen how the SA provides an improved performance when
zero forcing (ZF) or minimum mean square error (MMSE) detectors
are used, i.e. Fig. 3-a) and Fig. 4-a). This effect, more noticeable
as the number of antennas increases, is due to the better quality of
the reduced basis provided by the SA compared to the LLL algo-
rithms [12]. When SIC detectors are used in Fig. 3-b) and Fig. 4-b),
the three methods provide practically the same BER performance,
similar to what has been previously observed between KZ-aided and
LLL-aided SIC detectors [14]. The SLLL-aided SIC detector gives
a slightly better performance in the MMSE case, due to the column
sorting within the SQR decomposition.

5. CONCLUSION AND FUTURE WORK

This paper has compared the performance and complexity of the SA
and the complex LLL algorithm when applied to MIMO detection.
Although it has been previously shown that the SA provides a more
orthogonal lattice basis compared to the LLL algorithm, it does so
at the expense of a higher complexity, especially compared to the
SLLL. When looking at the performance of both LR-aided detec-
tors, the more orthogonal basis of the SA results in an improved
performance compared to the LLL algorithm if linear detectors are
used. However, both algorithms yield practically the same perfor-
mance if SIC detectors are used.

Further work includes implementing both LR algorithms in
hardware and assessing whether LR algorithms might not be able
to improve the performance of SIC detectors beyond a certain limit,
independently of the specific LR algorithm.

6. ACKNOWLEDGEMENT

The authors would like to thank Dominik Seethaler for many insight-
ful discussions.

0 5 10 15 20 25
10

−6

10
−4

10
−2

10
0

 M = N = 8, 4−QAM

E
b
/N

0
 (dB)

a)

B
E

R

 

 
LLL
SLLL
SA

0 5 10 15 20 25
10

−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

b)

B
E

R

ZF

MMSE

SIC−ZF

SIC−MMSE

Fig. 4. BER performance of LR-aided a) linear detectors and b) SIC
detectors as a function of the SNR per bit in a 8 × 8 system with
4-QAM.

7. REFERENCES

[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication,
Cambridge University Press, New York, NY, USA, 2005.

[2] H. Yao and G. W. Wornell, “Lattice-reduction-aided detectors for
MIMO communication systems,” in Proc. IEEE GLOBECOM ’02,
Taipei, Taiwan, Nov. 2002.

[3] C. Windpassinger and R. F. H. Fischer, “Low-complexity near-
maximum-likelihood detection and precoding for MIMO systems us-
ing lattice reduction,” in Proc. IEEE ITW ’03, Paris, France, Apr. 2003.

[4] M. Taherzadeh, A. Mobasher, and A. K. Khandani, “LLL lattice-basis
reduction achieves the maximum diversity in MIMO systems,” in Proc.
IEEE ISIT ’05, Adelaide, Australia, Sept. 2005.

[5] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search
in lattices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214,
Aug. 2002.

[6] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, “Factoring polynomi-
als with rational coefficients,” Mathematische Annalen, vol. 261, no.
4, pp. 515–534, Dec. 1982.
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