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Abstract— Based on the expectation maximization (EM)
algorithm, a joint channel tracking and maximal a posteri-
ori symbol detection method is proposed for orthogonal fre-
quency division multiple access systems employing multiple
transmit and receive antennas (MIMO). Using the Forney-
style factor graph (FFG), a forward-and-backward signal
processing method is developed to recursively solve the EM
problem for joint estimation and detection (JED) in MIMO
fading channels. By proper message scheduling and passing
over the FFG, simulations show that the proposed algorithm
is effective for joint MIMO channel tracking and symbol de-
tection in fast fading channels.

Keywords— Factor Graph, MIMO, OFDM, OFDMA, EM,
Joint Estimation and Detection.

I. Introduction

Orthogonal frequency division multiplexing/multiple ac-
cess (OFDM/OFDMA) using multiple input and multiple
output (MIMO) transceiving antennas is considered promis-
ing technology for next-generation broadband mobile wire-
less access (BMWA) due to its flexible architecture for mul-
tiple access and outstanding ability to combat severe signal
degradation in BMWA channels. To fully exploit the ad-
vantage of OFDM for BMWA, joint channel estimation and
detection (JED) is considered an effective method to per-
form blind/semi-blind data detection in fast fading channels.
However, the complexity of JED for all channel coefficients
of a MIMO-OFDM system is very high for fast fading chan-
nels. To reduce the complexity, there has been some research
results available in the literature, among which [1, 2], e.g.,
perform JED with hard symbol decision feedbacks while [3,4]
use soft information feedbacks according to the expectation-
maximization (EM) principle. It has been shown in [4, 5],
among others, that the EM-based JED can outperform al-
gorithms using hard decision feedbacks.

Despite the complexity of JED for OFDM, a direct ap-
plication of the JED of OFDM to OFDMA may not be
feasible and will suffer from severe performance degrada-
tion due to the multiple access interference (MAI) present
in the time-domain OFDMA received signals. In addition,
the MAI will aggravate when multiple transmit and receive
antennas are used in the OFDMA system. Exploiting the
signal architecture of OFDMA, in this work, we propose a
hybrid JED scheme that can perform MIMO channel track-
ing for OFDMA without the influence of MAI. Moreover, to
reduced the algorithm complexity, a forward-and-backward
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signal processing procedure is developed to recursively solve
the EM problem for JED, using the max-sum algorithm on
the Forney-style factor graph (FFG). By proper message
scheduling over the FFGs, the proposed algorithm presents
promising results of JED for MIMO-OFDMA in fast fading
channels, using only one out 256 OFDM symbols for pilots.

II. System Model

We consider a MIMO OFDMA system employing Nt

transmit antennas and Nr receive antennas. There are a to-
tal of K users sharing the available subcarriers of the system.
The number of the overall subcarriers is denoted by N. Mod-
ulated symbols of a user are first multiplexed into Nt trans-
mission streams, each corresponding to a transmit antenna.
Then, each sub-stream is mapped to the designated sub-
carriers and transformed with the inverse Fourier transfor-
mation (IFFT). The outputs of IFFT are cyclic-prefixed and
transmitted through the corresponding antenna over a time-
varying multiple-path fading channel. The discrete-time
channel response between the i-th receive and j-th transmit
antenna pair is denoted by hi,j(t) = {h1

i,j(t), . . . , h
L
i,j(t)}.

The number of channel taps, L, for each user is consid-
ered smaller than or equal to the length of the cyclic-prefix,
Lcp, which is a system parameter designed to combat inter-
symbol interference. Throughout this paper, we assume per-
fect synchronization is reached at the receiver and the chan-
nel coefficients remain unchanged within each OFDM block
of length N +Lcp and fade from block to block according to
the Jake’s model for Rayleigh fading channels. As a result,
there is no inter-carrier interference (ICI) in the system.

The received time-domain signal at the i-th receive an-
tenna for the m-th OFDM symbol interval is denoted by
yi,m = {yi,(m−1)(N+Lcp)+Lcp

, · · · , yi,m(N+Lcp)−1}, after re-
moving the cyclic prefix. Transforming yi,m with FFT, the
frequency-domain received signal Y n

i,m at the n-th frequency
tone, n = 0, . . . , N − 1, is given by

Y n
i,m = Xn

mHn
i,m + Nn

i,m (1)

where Xn
m � [Xn

1,m, . . . , Xn
Nt,m

] is the frequency-domain
transmitted symbol vector, and Hn

i,m � [Hn
i,1,m, · · · ,Hn

i,Nt,m
]T

in which Hn
i,j,m is the frequency-domain channel response be-

tween the ith receive antenna and the jth transmit antenna.
In addition, the noise vector Ni,m is considered zero-mean
and additive-white complex Gaussian (AWGN) distributed,
denoted by ∼ CN (0, σ2

n). We note that in this paper a
bold-faced lower-case character x represents a vector in the
time-domain, while an underlined upper-case X stands for
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a vector in the frequency domain. In addition, a bold-faced
X denotes a matrix either in the time or frequency domain.

In an OFDMA system, a single user is unlikely to oc-
cupy the entire bandwidth of the system. Therefore, with-
out loss of generality, we assume the set of frequency bins
allocated to the kth user is defined as {fk

1 , . . . , fk
Nk

}, where
1 ≤ fk

n ≤ N and Nk being the number of tones em-
ployed by user k. Collecting the frequency-domain received
signals with respect to (w.r.t.) user k, we have Y k

m �
[Y1,m(fk

1 ), . . . , YNr,m(fk
1 ), · · · , Y1,m(fk

Nk
), . . . , YNr,m(fk

Nk
)]T ,

which, under AWGN, can be modeled as

Y k
m = X

k
mHk

m + Nk
m (2)

with Hk
m � [Hfk

1
1,m, . . . ,H

fk
1

Nr,m, · · · ,H
fk

Nk
1,m , . . . , H

fk
Nk

Nr,m]T ,

X
k
m � diag{INr

⊗ Xfk
1

m , . . . , INr
⊗ X

fk
Nk

m }, ⊗ being the Kro-
necker product, and Nk

m ∼ CN (0, σ2
nINrNk

). Since we as-
sume no ICI in the system, users of the system operate in
orthogonal frequency channels. The derivations correspond-
ing to a certain user also apply to other users in the system.
Therefore, for convenience of expression, we drop the user
index, k, in the sequel.

A. Time-Domain Channel Dymanics

To track the time-varying channel coefficients, we model
the time-domain Rayleigh multipath fading coefficients as
a first-order auto-regressive (AR) random process. Let
h�

i,j,m be the �-th path time-domain channel coefficient be-
tween the i-th receive antenna and the j-th transmit an-
tenna at time m. We define for the �-th path of the mul-
tipath MIMO channel a time-domain channel vector h�

m �
[h�

1,1,m, . . . , h�
1,Nt,m

, . . . , h�
Nr,1,m, . . . , h�

Nr,Nt,m
]T . Based on

the AR model, the multipath MIMO channel coefficients,
hm � [(h1

m)T , . . . , (hL
m)T ]T , can be expressed as

hm = Fhm−1 + Bvm (3)

where for wide-sense stationary uncorrelated scattering
(WSSUS) channels, we have F = diag{F1, . . . ,FL} and
B = diag{B1, . . . ,BL}, each of which being a block di-
agonal matrix of dimension NrNtL × NrNtL. Further-
more, we also assume that the MIMO channel coefficients
are spatially uncorrelated. As a result, F� = αINrNt

and
B� = σ2

� (1 − α2)INrNt , � = 1, . . . , L, with α = J0(2πfdTs)
and σ2

� = E{‖h�
i,j,m‖2}. The function J0(·) is the zeroth-

order Bessel function of the first kind. And fdTs is the
Doppler frequency shift, fd, normalized by the sampling time
Ts. The noise vector, vm ∼ CN (0, INrNtL).

Since our goal is to recover Xm in (2), we should es-
tablish the relationship between Hm and hm. Let W de-
note the FFT matrix of dimension N × N . The frequency-
domain channel of hi,j,m � [h1

i,j,m, . . . ,hL
i,j,m]T is equal to

W(:, 1 : L)hi,j,m. According to the channel allocation made
for user k, the frequency-domain channel vector, Hi,j,m, cor-
responding to the i-th receive and j-th transmit antenna pair
of user k is given by

Hi,j,m = ST
k W(:, 1 : L)hi,j,m � Wkhi,j,m (4)

where Sk � [efk
1
, · · · , efk

Nk

], and en is a N × 1 vector with a
’1’ at the n-th entry and all the other entries 0’s. The matrix

Wk is of dimension Nk × L, downsampled from W. Given
the time-frequency relationship in (4), it can be shown that

Hm = (Wk ⊗ INrNt
)hm. (5)

Substituting this expression back into (2) leads to

Y m = Xm(Wk ⊗ INrNt
)hm + Nm

� XmWkhm + Nm. (6)

III. Joint Channel Tracking and Symbol

Detection over MIMO fading Channels

We now present joint channel estimation and symbol de-
tection (JED) for hm and Xm of each user according to the
channel dynamic model (3) and the system model (6).

Under the EM framework in [6], we define for user k the
observation up to time M as Y M

1 � {Y 1, · · · , Y M} and the
unknown parameter set as hM

1 � {h1, · · ·hM}. The hid-
den state of the system is XM

1 � {X 1, · · · ,XM}, where

Xm � {Xfk
1

m , . . . , X
fk

Nk
m }. It is clear that the complete data

for estimating the parameter set hM
1 is {Y M

1 ,XM
1 }. In the

absence of XM
1 , the log likelihood (LLK) of hM

1 is given by

log P (Y M
1 ,hM

1 ) = log EXM
1
{P (Y M

1 ,XM
1 ,hM

1 )}, (7)

where EXM
1
{·} is the expectation w.r.t. XM

1 .
It is in general difficult to estimate hM

1 directly from the
LLK. To reduce the complexity, we use the EM algorithm
to approximate it iteratively. To this end, we first define a
Kullback-Liebler (K-L) measure of hM

1 at iteration � as

QM (hM
1 |ĥ�−1

1:M ) �∑
{XM

1 }
log{P (Y M

1 ,hM
1 ,XM

1 )}P (XM
1 |Y M

1 , ĥ
�−1

1:M ), (8)

where ĥ
�−1

1:M is the estimate of hM
1 at iteration �−1. The EM

procedure is summarized in the following two major tasks:
E-step: Compute QM (hM

1 |ĥ�−1

1:M );

M-step: ĥ
�

1:M = arg maxhM
1

QM (hM
1 |ĥ�−1

1:M ).

The LLK of ĥ
�

1:M is guaranteed non-decreasing through the
EM procedure [7].

Even if the complexity of JED can be drastically reduced
using the EM algorithm, the computational complexities for
the corresponding E-step and M-step are still high. In the
sequel, we will develop a low-complexity recursive procedure
to process these two tasks based on the max-sum rule of the
factor graph algorithm in [8].

According to the Markovian property presented in (3), the
joint probability P (Y M

1 ,hM
1 ,XM

1 ) can be factorized into

P (Y M
1 ,hM

1 ,XM
1 ) = P (Y m−1

1 ,hm−1
1 ,Xm−1

1 )
P (Y m,Xm|hm)P (hm|hm−1)P (Y M

m+1,h
M
m+1,XM

m+1|hm). (9)

Given P (Xm|Y M
1 , ĥ

�−1

1:M ), m = 1, . . . , M , the E-step can be
rewritten as

QM (hM
1 |ĥ�−1

1:M ) ≡ QM (hm−1
1 |ĥ�−1

1:M )

+EXm

{
‖Y m − XmWkhm‖2/σ2

n|Y M
1 ; ĥ

�−1

1:M

}
+ log P (hm|hm−1) + QM (hM

m+1|ĥ
�−1

1:M ) (10)
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Fig. 1. FFG representation of the summation of (11) and (14), where

δ
h

f
m−1

(hm−1) = −γ‖hf
m−1 − hm−1‖2, γ → ∞.

where EXm
{·|Y M

1 ; ĥ
�−1

1:M} is the expectation w.r.t. Xm in

Xm, using P (Xm|Y M
1 , ĥ

�−1

1:M ) ∝ P (Y m|Xm, ĥ
�−1

1:M ) obtained
in the frequency domain. By some manipulations, we have

EXm

{
‖Y m − XmWkhm‖2/σ2

n|Y M
1 ; ĥ

�−1

1:M

}
≡

−[hm − C̃
−1
m W

H
k X̃

H
mY m]HC̃m[hm − C̃

−1
m W

H
k X̃

H
mY m] (11)

where we have defined the posterior mean

X̃m � (1/σ2
n)EXm

{Xm|Y M
1 ; ĥ

�−1

1:M} (12)
and its corresponding transformed correlation matrix

C̃m � (1/σ2
n)WH

k EXm
{XH

mXm|Y M
1 ; ĥ

�−1

1:M}Wk. (13)

We note that the dimension of EXm
{X

H
mXm|Y M

1 ; ĥ
�−1

1:M} ≤
NrNk, and the dimension of Wk is NkNrNt × LNrNt. For
C̃

−1
m to exist, min{dim(EXm

{X
H
mXm|Y M

1 ; ĥ
�−1

1:M}), NrNk} ≥
LNrNt. Therefore, we must at least have Nk ≥ LNt.

On the other hand, based on the channel dynamic model
(3), we have
log P (hm|hm−1) = −[hm−Fhm−1]

H
B
−H

B
−1[hm−Fhm−1].

(14)
Both (11) and (14) are of Gaussian quadratic form. There-
fore, the summation of these two is still a Gaussian quadratic
function of hm and hm−1. This can be more conveniently
expressed and evaluated using a forney-style factor graph.

We define for (11) a Gaussian quadratic function of

ηm(hm, μ̃
m

) = −[hm − μ̃
m

]HC̃m[hm − μ̃
m

] (15)

where μ̃
m

= C̃
−1
m W

H
k X̃

H
mY m. By the max-sum rule in [8], the

summation of (11) and (14) is equivalent to the constrained
maximization

λm(hm,hm−1) =

max
h�

m

max
vm

max
hf

m−1

{
δhf

m−1
(hm−1) − ‖vm‖2 + ηm(hm, μ̃

m
)

+δh�
m

(Fhf
m−1 + Bvm) + δhm

(h�
m)

}
≡ −[hm − μ

m
]HΣ−1

m [hm − μ
m

] (16)

where δx(z) = −γ‖x − z‖2, γ → ∞. The Forney-style fac-
tor (FFG) representation of the above constrained maxi-
mization is given in Fig. 1. The constraint imposed by
the system, denoted by G in the figure, is given in the
third line. Using the update rules of [8] for each individ-
ual node in G, we obtain Σm = (B−H

B
−1 + C̃m)−1 and

μ
m

= Σm(B−H
B
−1

Fhm−1 + W
H
k X̃

H
mY m).

G G G

1η mη Mη

0α 1α

mβ
2

1v−

mα

1−mβ1β Mβ1−Mβ

mĥ1ĥ Mĥ

1−Mα

2
mv− 2

Mv−

1−mα

Fig. 2. FFG representation of the forward-and-backward signal

processing for arg maxhM
1

QM (hM
1 |�h�−1

1:M ), where the functional node

G is defined in Fig. 1.

IV. Recursive Maximization of the EM

algrorithm

Equations (9), (11) and (16) together imply that the K-L
measure (10) can be expressed as a summation of two recur-

sion forms, QM (hm−1
1 |ĥ�−1

1:M ) and QM (hM
m+1|ĥ

�−1

1:M ), plus the
Guassian quadratic form λm(hm, μ

m
). More specifically, by

the factorization of
P (Y m−1

1 ,hm−1
1 ,Xm−1

1 ) = P (Y m−2
1 ,hm−2

1 ,Xm−2
1 )

P (Y m−1|hm−1)P (hm−1|hm−2)P (Xm−1) (17)
in (9), we have a forward recursion form of

QM (hm−1
1 |ĥ�−1

1:M ) ≡ QM (hm−2
1 |ĥ�−1

1:M ) + λm−1(hm−1,hm−2)
(18)

according to the results from (10) to (16). Similarly, we have
a backward recursion of
QM (hM

m+1|ĥ
�−1

1:M ) ≡ λm+1(hm+1,hm) + QM (hM
m+2|ĥ

�−1

1:M ).
(19)

Successively applying the recursions of (18) and (19) to (10)
yields

QM (hM
1 |ĥ�−1

1:M ) ≡
M∑

m=1

λm(hm,hm−1). (20)

This completes the E-Step of the EM algorithm. As we can
see from (12) and (13) that the evaluation relies on the com-
putations for the posterior mean of Xm and its correspond-
ing correlation matrix for all m. According to the system
model (6), the a posteriori probability (APP) of Xm can be
obtained with

P (Xm|Y M
1 ; ĥ

�−1

1:M ) ∝ P (Y m|Xm, ĥ
�−1

m ). (21)
For pilot symbols where Xm is given, there is no need for

the evaluations.

A. Forward-and-Backward Recursive Maximization

Equation (20) and (16) suggest that the maximization of
(20) w.r.t. hM

1 can be done recursively using the max-sum
rule in [8]. In the sequel, we present the message passing

procedure for arg maxhM
1

QM (hM
1 |ĥ�−1

1:M ). The details for the
corresponding message updates can be found in [8].

Using Fig. 1, we can rewrite

arg max
hM

1

QM (hM
1 |ĥ�−1

1:M ) = arg max
hm

{
max
hb

m

max
h�

m

max
vm

max
hf

m−1{
α(hf

m−1, μ
f
m−1

) − ‖vm‖2 + δh�
m

(Fhf
m−1 + Bvm)+

δhm
(h�

m) + ηm(hm, μ̃
m

) + δhm
(hb

m) + β(hb
m, μb

m
)
}}

(22)
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Fig. 3. BER of joint estimation and detection.

for m = 1, . . . , M , where we have the forward recursion of

α(hm−1, μ
f
m−1

) � max
h�

m−1

max
vm−1

max
hm−2

{
α(hm−2, μ

f
m−2

)

−‖vm−1‖2 + δh�
m−1

(Fhm−2 + Bvm−1)

+δhm−1
(h�

m−1) + ηm−1(hm−1, μ̃m−1
) (23)

and the backward recursion of

β(hm, μb
m

) � max
h�

m+1

max
vm+1

max
hm+1

max
hb

m+1

{
β(hb

m+1, μ
b
m+1

)

+δhm+1
(hb

m+1) + ηm+1(hm+1, μ̃m+1
) + δh�

m+1
(hm+1)

−‖vm+1‖2 + δhm
(F−1[h�

m+1 − Bvm+1]). (24)

The maximization is essentially performed in 3 steps. First,
pass messages from t = 0 to M −1 using (23) with an initial
message α(h0, μ

f
0
) = −[h0 −μf

0
]HΣf

0 [h0 −μf
0
]. Second, pass

messages from t = M to 1 using (24) with β(hM , μb
M

) = 0.

Finally, combine all messages with (22) resulting in ĥ1:M .
The FFG representation for the forward-and-backward sig-
nal processing procedure is shown in Fig. 2.

V. Message Scheduling and Simulation Results

We now present the message passing method and the sim-
ulation results to demonstrate the performance of the pro-
posed JED scheme for spatial multiplexed MIMO-OFDMA
systems. The size of FFT is N = 128. Both the numbers of
transmit and receive antennas are equal to 2. The number
of tones for each user is 24. The cyclic prefix is Lcp = 8,
and the number of path for each user is also L = 8. The
MIMO channel coefficients for each user are independently
generated using Jake’s model with the normalized Doppler
frequency shift fdTs = 0.01, where Ts is the OFDM sym-
bol time. The size of each processing block for JED is 256
OFDM symbols with the first OFDM symbol of each block
used as pilots. User data are modulated with DQPSK to
combat the phase ambiguity resulting from JED.

To start JED, first APP(X1) is evaluated with (21) by
setting h1 = 0. Given APP(X1), we calculate X̃1 and C̃1 for
η1(h1, μ̃1

) in (15) with (12) and (13), respectively. We next
apply the forward update rule to obtain α(h1, μ

f
1
) in (23) by

setting μf
0

= 0 and Σf
0 = I for α(h0, μ

f
0
). Having done that,

we move to t = 2 and evaluate APP(X2) by setting h2 = μf
1
.

Repeating the aforementioned steps yields η2(h2, μ̃2
) and

5 10 15 20 25
10-3

10-2

10-1

100
MSE v.s. SNR

Eb/N0

M
SE

Fig. 4. MSE for the estimates of channel amplitudes.

α(h2, μ
f
2
). Repeatedly applying these message passing steps

results in ηm(hm, μ̃
m

) and α(hm, μf
m

), ∀m = 1, . . . , M .
Given ηm(hm, μ̃

m
), we can start the backward message

passing for β(hm, μb
m

), with β(hM , μb
M

) = 0. Finally, comb-
ing α(hm, μf

m
) and β(hm, μb

m
) with (22) for all m results in

ĥ
1

1:M for the first iteration. The estimate ĥ
1

1:M can be used
to evaluate APP(Xm) again, ∀m = 1, . . . , M , hence start-
ing another iteration of the forward-and-backward message
passing for ĥ

2

1:M . Fig. 3 presents the bit error rate (BER)
of JED after 5 iterations of message passing, and the mean
squared error (MSE) for the estimates of channel amplitudes
is given in Fig. 4. These results show that the proposed
method is effective for JED in MIMO fading channels.

VI. Conclusions

We presented a factor graph EM algorithm and the
corresponding message-passing scheme for JED of MIMO-
OFDMA systems. Simulation results show that the pro-
posed scheme is effective for JED in MIMO fading channels.
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