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ABSTRACT

Single carrier (SC) modulation over a sparse channel motivated by
underwater acoustic communications (UAC) is considered. A BER
analysis for deterministic channels is rst presented that identi es
conditions under which SC with zero forcing detection outperforms
OFDM. The analysis also motivates the use of MMSE detection in
Rayleigh fading channels. An iterative receiver is then developed
combining LDPC decoding, channel estimation under a numerosity
constraint and CFO tracking. It is shown that MMSE Turbo equal-
ization arises naturally from the marginalization in the Factor Graph
when the decoder extrinsic densities are approximated as Gaussian.
A frequency-domain MMSE turbo equalizer is then combined with
Matching Pursuits (MP) channel estimation. Simulation results for
a realistic UAC channel are given showing consistent improvement
using iterative processing.

Index Terms— Decision feedback equalizers, iterative meth-
ods, decoding, parameter estimation.

1. INTRODUCTION

The use of single-carrier frequency-domain equalization (SC-FDE)
[1] is considered here for the UAC application, where the sparse
channel makes time-domain equalization impractical. SC-FDE is
advantageous for UAC due to the reduced peak-to-average power
ratio (PAPR) compared with OFDM, which can reduce the cost/size
of ampli ers and transducers. Results in the literature show that SC-
FDE performance is comparable to that of OFDM when combined
with coding [1]. However, sparse channel and CFO estimation are
challenging problems in single-carrier UAC due to the long multi-
path spreads.

Reduced transmit power for a target BER is obtained by com-
bining SC-FDE detection with LDPC codes. This appoach requires
joint iterative decoding and estimation of the sparse channel/CFO.
As suggested by the Factor Graph approach [2], the MP algorithm
for sparse channel estimation [3] is combined with MMSE turbo
equalization [4] and belief propagation decoding. It is shown that
the MMSE turbo equalizer arises directly from the Factor Graph
marginalization when the decoder extrinsic densities are modelled
as Gaussian.

The remainder of the paper is as follows. Signal and channel
models, along with the deterministic channel BER analysis are given
in Section 2. The relationship of MMSE turbo equalization to the
Factor Graph is developed in Section 3. The overall iterative receiver
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with channel/CFO estimation is presented in Section 4 and results
and conclusions follow in Section 5.

2. SIGNAL MODELS AND BER FOR SC-FDE

The SC system proposed here is based on a generic underwater acous-
tic channel with Doppler spread < 1 Hz and temporal multipath
spread of < 25 msec. Thus, a cyclic pre x of Tp = 25 msec. length
and packet length of Td = 105 msec. are used. The QPSK sym-
bol rate is 1/Tsym = 9600 sps and a (1008, 504) Gallager LDPC
code [5] is employed. For realism in simulations, a detailed signal
model incorporating pulse shaping, Doppler shift/spread and multi-
path spread is considered. The transmit waveform during one packet
is thus

s(t) =

Nd−1∑
k=−Np

ckg(t− kTs), (1)

where g(t) is a raised-cosine pulse with energy 2Eb and bandwidth
(1 + α)/(2Tsym). The sequence {ck} includes pilot and code sym-
bols, and corresponds to the vector c = [cNd−1cNd−2 . . . c0]

T .
QPSK modulation is assumed, so that ck = ck,1 + jck,2, where
ck,i ∈ {−1, +1}. Each bit ck,i is a pilot or output of an LDPC
encoder.

The channel impulse response including the effect of Doppler
shift is

h(t, τ) =

Nc∑
l=1

αl(t)e
i2πfcβ(t)tδ(τ − τl(t) + β(t)t). (2)

The Doppler compression factor is β(t) = v(t)/c, where v(t) is
the instantaneous platform velocity and c is the sound speed. Long-
range transmission (≥ 1 km) is assumed so that the arrival angles
are approximately equal, resulting in a common Doppler compres-
sion on each multipath. In designing a robust SC-FDE receiver, it
is assumed that the αl(t) ∈ C and Doppler β(t) are constant only
during the symbol interval Td + Tp, and are independent between
intervals. The delays τl(t) are relatively constant for stationary plat-
forms, and can be predicted by ray-tracing. The received signal dur-
ing one packet is

r(t) =

Nd−1∑
k=−Np

Nc∑
l=1

αlckei2πfcβtg((1+β)t−kTs−τl)+n(t), (3)

for t ∈ [nTd−Tp, (n+1)Td). Ocean ambient and preampli er noise
are represented by n(t). This noise is modelled as circular Gaussian
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with spectral density 2N0. The focus here is on stationary platforms,
where the Doppler compression β is suf ciently small that its effect
on the pulse waveform g(t) can be neglected for purposes of algo-
rithm development. However, the pulse time-compression in (3) due
to β is accurately modelled in the simulations in Section 5. Residual
Doppler due to waves and buoy/anchor motion can generate signi -
cant carrier frequency offsets βfc which cannot be neglected in the
receiver design.

The signal r(t) is low-pass ltered to the Nyquist bandwidth.
The narrowband Doppler assumption, in which β << 1 results in a
Nyquist sampled signal r(q) = r(qTs) which from (3) is

r(q) =

Nd−1∑
k=−Np

fq−kei2πfcβqTsck + n(q),

fq =

Nc∑
l=1

αlg(qTs − τl), q = 0, 1, . . . , Nf − 1.

(4)

The effective channel length is then approximately Nf = max(τl)/Ts+
Tg/Ts where Tg is the duration of pulse g(t). Now form the vector
r = [r(Nd − 1)r(Nd − 2) . . . r(0)]T with the cyclic pre x com-
ponent truncated. Due to the cyclic pre x, with c−l = cNd−l for
l = 1, . . . Np, the effective channel matrix F ∈ C

Nd×Nd is formed
by Nd circular shifts of the vector f = [f0, f1, . . . , fNf−1]. The
vector received signal is

r = V(β)Fc + n,

V(β) = diag{ei2πβfc(Nd−1)Ts , ei2πβfc(Nd−2)Ts , . . . 1}T .
(5)

The noise n has covariance matrix σ2
nI where σ2

n = 2N0/Ts.

Zero-forcing equalization for SC-FDE is next reviewed to ob-
tain a simple comparison of uncoded SC-FDE and OFDM BERs for
classes of deterministic channels. Assume perfect channel state in-
formation (CSI), with f known a-priori. Let W ∈ C

Nd×Nd be the
FFT matrix. Then WHFW = H, where the diagonal frequency
response matrix elements are

Hii =

Nf−1∑
l=0

fl exp(−j2πl(i− 1)/Nd). (6)

Thus, ZF demodulation with perfect CSI and zero Doppler corre-
sponds to computing

ĉ = WH−1WHr = c + n′. (7)

Note that the noise n′ has covariance matrix 2N0
Ts

WHH−1(H∗)−1W.

The uncoded BER for SC-FDE with QPSK modulation and de-
terministic channels is readily shown from (7) to equal.

Pb =
1

2
erfc

⎛
⎝√

Eb

N0
1

Nd

∑Nd−1
i=0

1
|H′

ii|2

⎞
⎠ . (8)

Note the rescaling Hii =
√

2Eb
Ts

H ′
ii, where

√
2Eb
Ts

= g(0) is the

amplitude of the raised-cosine pulse with energy 2Eb. For an all
pass unit-energy channel, this corresponds to setting the channel gain
E{|f0|2} to unity.

For OFDM, the received signal is identical to (5), except that the
code vector c is replaced by its IFFT WHc. The average BER over

Nd subcarriers is then

Pb =
1

Nd

Nd−1∑
i=0

1

2
erfc

(√
Eb

N0
|H ′

ii|2
)

. (9)

The following Proposition compares SC-FDE and OFDM for
zero-forcing detection.

Proposition 1 Consider case (a) where |H ′
ii|2 < 3/(2γb) for i =

0, . . . , Nd − 1, where γb = Eb/N0. In case (a), the zero-forcing
SC-FDE BER is lower-bounded by the OFDM BER. Now for case
(b), let |H ′

ii|2 > 3/(2γb) for all i. Then the OFDM BER is lower
bounded by the ZF SC-FDE result. The OFDM and SC-FDE system
performance is equivalent when the channel is allpass.

Proof: De ne αi = 1
|H′

ii|2
. For case (a), we can show that erfc(

√
γb/αi)

is concave in αi in the region {αi} ∈ [2γb/3,∞)Nd . Then using
Jensen’s inequality

1

Nd

Nd−1∑
i=0

1

2
erfc

(√
γb

αi

)
<

1

2
erfc

⎛
⎝√

γb

1
Nd

∑Nd−1
i=0 αi

⎞
⎠ . (10)

But the expression on the r.h.s. of (10) is just the SC-FDE error
rate. Equality in (10) is attained when αi = c for all i, that is,
for an all-pass channel. For case (b), we have αi < 2γb/3 for all
i, and erfc(

√
γb/αi) is a convex function. Thus the inequality is

reversed in (10), and for case (b) SC-FDE BER is upper bounded by
the OFDM error rate.

Proposition 1 implies that uncoded SC-FDE with ZF is supe-
rior to OFDM as long as all channel gains are lower bounded by
|H ′

ii|2 > 3/(2γb). Thus, for strongly Rician channels we would
expect SC-FDE-ZF performance to be comparable to OFDM. How-
ever, the performance of SC-FDE with zero-forcing can be espe-
cially poor in Rayleigh fading. Assume that H ′

ii are i.i.d. circular
Gaussian with unit variance for i = 0, . . . , Nd − 1. This is the case
when the channel coef cients fi are likewise circular Gaussian i.i.d.
Then as Nd → ∞, the BER in (8) tends to 1/2. This is due to
the in nite variance of the inverse of an exponential r.v. of the form
1/|H ′

ii|2, which when combined with the strong law of large num-
bers, shows that

∑Nd−1
i=0 |H ′

ii|2/Nd → ∞ a.s. Thus, MMSE de-
tection of SC-FDE, combined with coding is required for adequate
performance over Rayleigh-fading channels.

3. RELATIONSHIP OF MMSE TURBO EQUALIZATION
AND THE FACTOR GRAPH FOR SC-FDE

An overall iterative receiver is sought combining LDPC decoding,
channel and CFO estimation. The Factor Graph method in [2] has
been used to justify such iterative structures. Furthermore, MMSE
detection/cancellation in a Turbo equalizer has also been shown to
correspond to minimization of Kullback-Leibler distance between
the true APP and a constrained factorizable APP [6]. Here, it is
shown that Turbo equalization corresponds directly to the Factor
Graph marginalization when the decoder extrinsics are viewed as
Gaussian.

In the FG approach, variable nodes ck,i represent coded bits,
code constraints are represented by the LDPC parity check matrices
and the likelihood of the received vector r in (5) is represented by a
separate function block. The key problem in the FG is approximating
the density-to-variable messages μp→ck,i , de ned by the marginal-
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ization

μp→ck =
∑

cl=±1±i1:l �=k

∫
CN (r;Fc, σ2

nI)
∏
l �=k

ql(cl)dF. (11)

Note that CFO uncertainty has been eliminated from (11) for sim-
plicity. In (11), the QPSK symbol probabilities ql(cl) are the LDPC
decoder extrinsics.

First, consider marginalization only over the coded QPSK sym-
bols cl. The cl are approximated as independent Gaussian with
means cl and diagonal covariance matrix Q. The bits cl,j are given
by the decoder soft bits tanh(λe(cl,j)/2), where λe() are the extrin-
sic likelihoods. Further de ne F(k) as the channel matrix formed by
deleting column k, and c(k) as the QPSK symbols excluding ck. The
k-th column of F is denoted fk. Then the problem is to compute the
message

μp→ck =

∫
CN (r;F(k)c(k) + fkck, σ2

nI)CN (c(k); c(k),Q)dc(k).

(12)
The MMSE equalizer solution is given by the following proposition.

Proposition 2 The density function to code variable message for SC
modulation, when the decoder extrinsics are approximated as inde-
pendent Gaussian, is given by

μp→ck ∝ exp
(−|ck − ĉk|2/pk

)
ĉk =

1

fH
k Σ−1fk

fH
k Σ−1 (

r− F(k)c(k)

)
Σ = fkQfH

k + σ2
nI, pk = (fH

k Σ−1fk)−1.

(13)

That is, the message is a Gaussian density with mean and covariance
given by a MMSE Turbo equalizer.

Outline of Proof: The integral (12) has a closed form solution iden-
tical to that for the Kalman lter innovations likelihood. The result
is

μp→ck = CN (r− F(k)c(k); fkck,F(k)QFH
(k) + σ2I). (14)

The density (14) is then readily manipulated to yield the density (13)
in terms of ck.

The additional marginalization over F cannot be computed in
closed form in general. A practical strategy is to approximate the in-
tegral using the value of F corresponding to the maximum-likelihood
solution, conditioned on soft bits c computed using the decoder total
APPs. However, the channel f is typically sparse, hence the Match-
ing Pursuits algorithm is used in the next section to obtained a con-
strained numerosity solution.

4. ITERATIVE DECODING AND CHANNEL ESTIMATION
FOR SC-FDE

Unfortunately, the MMSE detector in Proposition 2 does not admit
a simple frequency-domain form, in which equalization corresponds
to multiplication by a diagonal matrix. To derive a practical iterative
receiver, an alternative frequency-domain detector is developed as
follows. First, the CFO-corrected IFFT of the received signal (5) is
computed yielding

r′ = WHV(β̂)Hr ≈ HWHc + n′, (15)

where n′ still has covariance matrix σ2
nI. The MMSE detector M ∈

C
Nd×Nd minimizing ||c−Mr′||2 assuming E{ccH} = 2I is

M = WHH

[
HHH +

N0

Ts
I

]−1

. (16)

Now de ne diagonal matrices D,D′ with i-th components

Dii =
H∗

ii

|Hii|2 + N0
Ts

, D′ii = DiiHii. (17)

The overall MMSE detector is then ĉ = WDWHV(β̂)Hr, which
implies that equalization is still in the frequency domain, and only
requires multiplication of the IFFT output by a diagonal matrix.

An iterative receiver based on the frequency-domain MMSE equal-
izer is now developed, based on similar structures for OFDM and
SC modulation [6]. The input to the decoder will be the set of
log-likelihoods λ(y′k|ck,i), where y′k is derived below and is the
MMSE detector output ĉk with ISI subtracted via soft bits ĉk,i =
tanh(λe(ck,i)/2). The decoding algorithm used here to obtain λe()
is the sum-product algorithm based on the tanh rule [7].

The likelihood λ(y′k|ck,i(n)) is found by rewriting the MMSE
frequency-domain detector output as

yk = (WD̂WHV(β̂)Hr)k

≈ 1

Nd

Nd−1∑
i=0

|Ĥii|2
|Ĥii|2 + N0

Ts

ck +
∑
j �=k

(WD′WH)kj(ĉj + c̃j) + n′k.

(18)

The channel estimates Ĥii are computed via the MP algorithm as
discused below. The soft symbol ĉj is again computed using the
decoder extrinsic λe(ck,i), and the soft symbol error c̃j is zero mean
with covariance

E{c̃2
j} = σ2

cj
= (1− ĉ2

j,1) + (1− ĉ2
j,2). (19)

Then de ne the ISI cancelled signal

y′k = yk −
∑
j �=k

(WD̂′WH)kj ĉj , (20)

where D̂′ is given by (17), but using the estimates Ĥii. The likeli-
hood is

p(y′k|ck) = CN
(

y′k;
1

Nd

Nd−1∑
i=0

|Ĥii|2
|Ĥii|2 + N0

Ts

ck, σ2
k

)
, (21)

where

σ2
k =

∑
j �=k

|(WD′WH)k,j |2σ2
cj

+
2N0

Ts

1

Nd

Nd−1∑
i=0

|Ĥii|2
(|Ĥii|2 + N0/Ts)2

.

(22)
The MMSE detector LLR used by the LDPC decoder for bit ck,1

for example is

λm(ck,1) = λ(y′k|ck,1) = 4αHRe{y′k}/σ2
k

αH =

Nd−1∑
i=0

|Ĥii|2
|Ĥii|2 + N0/Ts

.
(23)

The Doppler shift β and channel f are estimated on a symbol-by-
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symbol basis. In order to decouple the problems, the conventional
least-squares channel estimate is rst used to estimate β followed by
Matching Pursuits (MP) channel estimation. First, consider Doppler
estimation and approximate r in terms of the pilot and soft symbols
as

r ≈ V(β)Ĉf + n, (24)

where C is de ned by Nd truncated circular shifts of its rst row
[ĉNd−1, ĉNd−2, . . . , ĉNd−Nf ]. The estimated symbols or pilots are

ĉk = pk,1 + jpk,2 (Pilot)

ĉk = tanh(λd(ck,1)/2) + j tanh(λd(ck,2)/2) (Data) ,
(25)

where λd(ck,i) is the LLR computed using the a-posteriori probabil-
ities (APPs) from the LDPC decoder. Note that the total APPs rather
than extrinsics from the decoder are used in the MP algorithm, as
this leads to better quality channel estimates, and direct feedback
from the estimator back to the decoder is not an issue. Substitu-
tion of the least-squares channel estimate f̂LS into the cost function
||r−V(β)Cf ||2 yields the Doppler estimate

β̂ = arg max
β

rHV(β)Ĉ(ĈHĈ)−1ĈHV(β)Hr. (26)

The MP algorithm follows [3]. First compute the suf cient statis-
tics v1 = ĈHV(β̂)Hr and A = ĈHĈ. The channel is assumed
sparse with N << Nf signi cant coef cients. Then at stage k
of MP, the single-coef cient channel which results in the smallest
squared error is chosen correpsonding to the steps. The FFT yields
the frequency-domain channel estimates Ĥk,k.

vk = vk−1 −Apk−1 f̂pk−1

pk = arg max
l �={p1,...,pk−1}

|vk
l |2/Apl,pl

f̂pk = v1
pk

/Apk,pk .

(27)

The iterative receiver is summarized as follows. 1) Compute
Doppler and MP channel estimates using decoder log-APPs λd(ck,i).
2) Update MMSE Turbo detector likelihoods λm(ck,i) in (23). 3)
Run LDPC decoder and update decoder extrinsics λe(ck,i) and de-
coder log-APPs λd(ck,i).

5. RESULTS AND CONCLUSIONS

The iterative SC-FDE receiver was simulated for a 3-ray multipath
channel with delays τl = [0, 17.2, 22.2] msec. The coef cients
αl(t) in (2) were generated via AR-1 processes with Rayleigh fad-
ing. Fig. 1 illustrates the BER for uncoded MMSE and iterative
LDPC decoding for a Doppler spread of .05 Hz and a radial Doppler
velocity of .05 m/s. A signi cant BER gain is obtained for the coded
system after 4 outer iterations. In Fig. 2, the Doppler spread was
raised to .1 Hz with a radial velocity of .25 m/s. At a BER of 10−3,
it is seen that an SNR of 9 dB is required for the higher Doppler
spread/velocity scenario in Fig 2. Both the pulse time-compression
and time-variation of the f vector within a symbol would explain this
degradation.

To conclude, an iterative SC-FDE receiver was developed for
sparse multipath channels. The MMSE Turbo equalizer structure
was justi ed by an approximation marginalization of the Factor Graph
messages. The Matching Pursuits channel estimator embedded in
the iterative receiver appears to be robust at higher Doppler spreads.
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Fig. 1. BER for .05 Hz Doppler spread, .05 m/s radial velocity.

1 2 3 4 5 6 7 8 9
10

4

10
3

10
2

10
1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 
LDPC/MMSE Iteration 1
Iteration 2
Iteration 4
MMSE uncoded

f
D

 = .1 Hz
v

r
 = .25 m/s

Nα = 3

Fig. 2. BER for .1 Hz Doppler spread, .25 m/s radial velocity.

6. REFERENCES

[1] N. Benvenuto and S. Tomasin, “On the comparison between
OFDM and single carrier modulation with a DFE using a fre-
quency domain feedforward lter,” IEEE Transactions on Com-
munications, vol. 50, pp. 947–955, June 2002.

[2] C. Herzet, V. Ramon, and L. Vandendorpe, “A theoretical frame-
work for iterative synchronization based on the sum-product and
the expectation-maximization algorithms,” IEEE Transactions
on Signal Processing, vol. 55, pp. 1644–1658, May 2007.

[3] S. Kim and R. A. Iltis, “A Matching Pursuit/GSIC-based algo-
rithm for DS-CDMA sparse channel estimation,” IEEE Signal
Processing Letters, vol. 11, pp. 12–15, Jan. 2004.
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