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ABSTRACT

Lattice reduction by means of the LLL algorithm has been previ-
ously suggested as a powerful preprocessing tool that allows to im-
prove the performance of suboptimal detectors and to reduce the
complexity of optimal MIMO detectors. The complexity of the LLL
algorithm is often cited as polynomial in the dimension of the lattice.
In this paper we argue that this statement is not correct when made
in the MIMO context. Specifically, we demonstrate that in typical
communication scenarios the worst-case complexity of the LLL al-
gorithm is not even finite. For i.i.d. Rayleigh fading channels, we
further prove that the average LLL complexity is polynomial and
that the probability for an atypically large number of LLL iterations
decays exponentially.

Index Terms— LLL, lattice reduction, MIMO, decoding, pre-
coding, complexity.

1. INTRODUCTION

Lattice reduction (LR) techniques have become increasingly impor-
tant tools in the design of transceivers for multiple input-multiple
output (MIMO) communication systems. It was first demonstrated
in [1] that augmenting traditional linear MIMO detectors with LR
techniques yields new (LR aided) detectors with favorable perfor-
mance. LR has also been used to reduce the complexity of optimal
detectors such as the sphere decoder [2, 3] and to improve broadcast
precoding schemes [4].

LR in MIMO systems amounts to reducing a lattice basis that
corresponds to the MIMO channel matrix, which itself is usually
modeled in a stochastic manner. The most popular solution to this
problem (see e.g. [2, 4, 5]) has been the basis reduction algorithm of
Lenstra, Lenstra, and Lovász (LLL) [6]. The LLL algorithm operates
iteratively and terminates as soon as a reduced basis is obtained. The
number of iterations required, denoted K, depends strongly on the
original lattice basis. For practical implementations of LR in MIMO
systems, it is thus of utmost importance to characterize the statistics
ofK for a given stochastic MIMO channel model.

A well-known result regarding the number of LLL iterations
states that for n-dimensional lattices with integer input basis vectors
of bounded length B, the LLL algorithm terminates after at most
O(n2 log B) iterations [6]. This results was used in [6] to prove
that the complexity (defined as the number of bit operations) of the
LLL algorithm is polynomial in the size of the input (defined as the
number of bits required to describe the lattice basis). However, the
complexity analysis of [6] does not apply to the MIMO context since

This work was supported by the STREP project No. IST-026905 (MAS-
COT) within the Sixth Framework Programme of the European Commission.

the stochastic channel models typically adopted do not result in inte-
ger basis vectors of bounded length (e.g., in the i.i.d. Rayleigh fading
scenario the lattice basis has i.i.d. Gaussian elements, which results
in real-valued basis vectors of arbitrary large length). Furthermore,
contrary to [6] most of the MIMO literature measures complexity in
terms of arithmetic operations on real-valued numbers, whose size
can not be measured in bits. In spite of these deviations from the as-
sumptions in [6], that paper is often incorrectly used to claim poly-
nomial complexity of the LLL algorithm when applied to MIMO
systems (see e.g. [4, 5, 7]).

In this paper, we present a detailed complexity analysis of the
LLL algorithm when applied to MIMO channels:

• For MIMO channel models that allow for arbitrarily poorly
conditioned channel matrices (e.g., the i.i.d. Rayleigh fading
model), we demonstrate that for any given k there exist chan-
nel realizations that require K ≥ k LLL iterations, i.e., in
this case, there is no universal upper bound on the number of
LLL iterations (even for fixed lattice dimension).

• By extending [8] to i.i.d. Rayleigh fading MIMO channels,
we show that the average number of LLL iterations is upper
bounded by a polynomial in the dimension of the lattice. A
similar result was independently obtained in [9], although by
a slightly different approach. The result therein is however
for a real-valued Gaussian channel model and fails to apply
to the broadcast precoding case

• We establish that the tail probability ofK in the i.i.d. Rayleigh
fading case decays at least exponentially.

The rest of the paper is organized as follows. The LLL algo-
rithm is outlined in Section 2.1 and its application to MIMO sys-
tems is briefly reviewed in Section 2.2. The main contributions of
this work are found in Section 3, where we rigorously establish the
claims made above.

2. BACKGROUND ANDMOTIVATION

In order to put the statements of Section 3 into context, we provide
some background on the LLL algorithm, its use forMIMO detection,
and the stochastic lattice models arising in that context.

For m ≥ n, an n-dimensional lattice L in m-dimensional Eu-
clidean space is a discrete subset of R

m given by

L �
˘
Bx |x ∈ Z

n
¯

. (1)

Here Z denotes the set of integers and B = [b1 . . .bn] ∈ R
m×n

denotes the generator matrix of L and consists of n linearly inde-
pendent lattice basis vectors b1, . . . ,bn. For a given lattice L, the
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Table 1 The LLL algorithm
1: l ← 2
2: repeat
3: bl ← bl − �μl l−1�bl−1 (translate)
4: if ‖b̂l−1‖2 > t2‖b̂l + μl l−1b̂l−1‖2 then
5: bl ↔ bl−1 (swap)
6: l ← max(l − 1, 2)
7: else
8: for j = l − 2 to 1 do
9: bl ← bl − �μlj�bj (translate)
10: end for
11: l ← l + 1
12: end if
13: until l > n

generator matrix is not unique. In fact, if B is a generator matrix
for L, then any matrix B′ = BU, where U is unimodular (i.e.,
U ∈ Z

n×n and det(U) = ±1) is also a generator matrix for L.
Given a generator matrix B, the task of LR algorithms is to find an-
other generator matrixB′ that has improved properties according to
specific criteria.

2.1. LLL Lattice Reduction

For a given a generator matrix B = [b1 . . .bn], let b̂1, . . . , b̂n

denote the vectors obtained by Gram-Schmidt orthogonalization:

b̂i � bi −
i−1X
j=1

μij b̂j with μij �
bT

i b̂j

‖b̂j‖2
. (2)

A lattice basis is Lovász t-reduced if it satisfies the Lovász condition

‖b̂i−1‖2 ≤ t2‖b̂i + μi i−1b̂i−1‖2 for 1 < i ≤ n , (3)

and in addition is size-reduced, i.e.,

|μij | ≤ 1
2

for 1 ≤ j < i ≤ n . (4)

The real parameter tmay be chosen anywhere in the range (1, 2) but
is typically chosen as t = 2/

√
3. The basis vectors of any Lovász

t-reduced basis are relatively short and nearly orthogonal [6], which
is desirable in many applications.

The LLL algorithm, stated in Table 1 for convenience, trans-
forms a given basis into a Lovász t-reduced basis through a sequence
of swaps and translations of the basis vectors (�·� denotes rounding
to the closest integer). The algorithm uses an index l (initialized to
l = 2) and repeatedly tests the Lovász condition (cf. line 4)

‖b̂l−1‖2 ≤ t2‖b̂l + μl l−1b̂l−1‖2 . (5)

If (5) is violated, the basis vectors bl and bl−1 are swapped (line 5)
and the index l is decremented (provided l > 2). If (5) is satisfied,
the basis is size-reduced through a sequence of integer translations
(lines 8–10) and l is incremented. The algorithm terminates as soon
as l > n. At this stage, the basis is guaranteed to satisfy both (3) and
(4). The original basis is overwritten with the reduced one. It should
also be understood that b̂i, 1 ≤ i ≤ n, and μij , 1 ≤ j < i ≤ n,
need to be updated according to (2) whenever the basis is changed
(this happens in lines 3, 5, and 9).

2.2. LR-Aided MIMO Detection

We briefly summarize the application of LR in MIMO systems. Fur-
ther details and additional motivation can be found in [1–4].

We consider the specific case of an equivalent complex baseband
model for a MIMO system with N transmit and M ≥ N receive
antennas, assuming a flat-fading MIMO channel. Here, the received
vector r ∈ C

M is given by

r = Hs + v , (6)

whereH ∈ C
M×N is the channel matrix containing complex fading

coefficients and v ∈ C
N is additive white Gaussian noise. For sim-

plicity, we assume that the transmitted symbols s are points in Z
N
C ,

where ZC = Z + iZ denotes the complex integers (this assumption
is often satisfied in practice after proper scaling and translation of
the symbol constellation [3]).

The model (6) is formulated in the complex domain but can be
easily transformed into an equivalent real-valued model

yr = Hrsr + vr, (7)

whereHr ∈ R
m×n (with n = 2N andm = 2M ) is given by

Hr �

»�{H} −�{H}
�{H} �{H}

–
(8)

(�{·} and �{·} respectively denote the real and imaginary part) and
where the vectors yr, sr , and vr are defined accordingly. Since
sr ∈ Z

n, the matrix Hr may be seen as the generator matrix of a
lattice, and yr as a lattice point perturbed by noise. The decoding
problem amounts to finding a lattice point close to yr [2, 3].

LR-aided detection is motivated by the fact that the performance
and complexity of many detectors (e.g. the zero forcing detector)
depends crucially on the condition number of the generator matrix
(channel)Hr. The key idea is to rewrite (7) as

yr = H
′
r s

′
r + vr, (9)

where H′
r = HrU with U unimodular is an improved generator

matrix and s′r = U−1 sr is again in Z
n. An estimate of sr can be

obtained by applying any conventional detector to the model (9) and
transforming the resulting intermediate solution back to the origi-
nal domain via the relation sr = Us′r. The aim of LR is to select
U such that the columns of H′

r are as orthogonal as possible since
this is favorable for detector performance and/or complexity. This
task can be accomplished using the LLL algorithm. Indeed, it has
recently been shown that LR-aided zero-forcing detection using the
LLL algorithm achieves full receive diversity in i.i.d. Rayleigh fad-
ing [5].

2.3. Stochastic Lattice Models

In the following, we will assume aMIMO channel with i.i.d. Rayleigh
fading and consider two corresponding stochastic lattice models. In
the first case, referred to as primal Rayleigh model, the generator
matrix equals BP � Hr (cf. (8)). Here, BP consists of two de-
terministically related blocks (the first N columns and the last N
columns) whose elements are separately i.i.d. Gaussian.

With the second case, the LLL algorithm is applied to the dual
basis, which is preferable in some situations [5]. The generator
matrix of the dual basis is given by BD � (H†

r)
T, where H†

r =
(HT

r Hr)
−1HT

r denotes the Moore-Penrose pseudo inverse of Hr .
Using the matrix inversion lemma, it can be shown that BD �

(H†
r)

T features exactly the same block structure as Hr in (8). This
case will referred to as the dual Rayleigh model and also arises nat-
urally in the precoding context (e.g. [4]).
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3. LLL COMPLEXITY

This section provides an analysis of the worst- and average-case
complexity of the LLL algorithm when used in MIMO systems.
Complexity will be measured in terms of the the number K of LLL
iterations, defined as the number “repeat” loops entered by the LLL
algorithm (more precisely, the number of Lovász tests (line 4 in Ta-
ble 1) performed by the algorithm). We emphasize that all results
hold true for arbitrary values of t in the range (1, 2).

3.1. Impact of Condition Number

For an arbitrary basis B = [b1 . . . bn] define

a � min
1≤i≤n

‖b̂i‖ and A � max
1≤i≤n

‖b̂i‖ (10)

where b̂1, . . . , b̂n are the Gram-Schmidt vectors corresponding to
B (cf. (2)). It was shown in [8] that the number of iterations K
required to LLL-reduceB is upper bounded according to

K ≤ n2 logt

A

a
+ n . (11)

As an immediate consequence of the bound (11), the LLL algorithm
is guaranteed to terminate for any given real-valued basis. Our sub-
sequent analysis will replace (11) with a less tight bound, which is,
however, more tractable within our stochastic lattice models. To this
end, note that σ1 ≥ A and a ≥ σn where σ1 ≥ . . . ≥ σn are
the singular values of the generator matrix B [10]. This implies
A/a ≤ κ(B) where κ(B) � σ1/σn is the condition number of B.
The number of LLL iterations is thus upper bounded according to

K ≤ n2 logt κ(B) + n . (12)

Based on (12) it is seen that the number of LLL iterations K can
become large only for poorly conditioned generator matrices (i.e.,
small κ(B) implies small K). The bound (12) has the advantage
that it is useful for both the primal and dual Rayleigh models since

κ(BP) = κ(BD) = κ(H) ,

which may be seen by noting that H, Hr , and (H†
r)

T all have the
same condition number [10]. Since the primal and dual Rayleigh
model impose no constraint on the condition number κ(H), the right-
hand side of (12) is in these cases not bounded from above. This
suggests that here the number of LLL iterations can be arbitrarily
large. The next section will make this statement more precise.

3.2. Worst-Case Analysis

Proposition 1 For any integers k, n, m such that 2 ≤ n ≤ m, there
exist real-valued bases for n-dimensional lattices in R

m such that
their LLL reduction requires at least k iterations (i.e.,K ≥ k).

Before discussing the implications of this result for MIMO sys-
tems, we provide a constructive proof inspired by the analysis of the
related Gauss’ algorithm in [11]. That the worst-case complexity of
the Gauss algorithm is infinite is also noted in [1].
Proof: It is sufficient to prove the case n = 2 by constructing bases
[b1 b2], whose LLL reduction requires at least k iterations. The gen-
eral case n > 2 follows simply by considering lattice bases whose
first two basis vectors are b1 and b2.

Consider two linearly independent real-valued vectors u,v ∈
R

m that satisfy
‖u‖ > 2‖v‖ , (13)

but are arbitrary otherwise. The basis [uv] generates a two-dimen-
sional lattice L in R

mand is necessarily size-reduced since (13) im-
plies that

|vTu|
‖u‖2

<
1

2
. (14)

For an arbitrary integer r, |r| ≥ 3, letw be given by

w � ru + v .

Then, [b1b2] = [wu] = [uv]M with

M �

»
r 1
1 0

–
(15)

forms another basis for L sinceM is unimodular. Furthermore, the
basis [b1b2] = [w u] is also size-reduced since

‖w‖ ≥ |r|‖u‖ − ‖v‖ > 2‖u‖ , (16)

which implies

μ21 =
bT

2 b̂1

‖b̂1‖2
=

bT
2 b1

‖b1‖2
=

uTw

‖w‖2
<

1

2
. (17)

Consider now the LLL reduction of [b1b2] = [w u], starting with
l = 2. Due to (17), �μ21� = 0 and line 3 will leave b2 unchanged.
In line 4, the LLL algorithm finds the condition ‖b1‖ > t2‖b2‖
(remember l = 2) satisfied since ‖w‖2 > 4‖u‖2 (cf. (16)) and t2 <
4. Hence, the basis vectors are swapped to form [b1b2] = [uw]. In
the next iteration b2 is replaced by

b2 − �μ21�b1 = w − �μ21�u
where

μ21 =
bT

2 b̂1

‖b̂1‖2
=

bT
2 b1

‖b1‖2
=

wTu

‖u‖2
= r +

vTu

‖u‖2
.

By (14) it follows that �μ21� = r. Hence, the algorithm replaces
b2 with w − �μ21�u = w − ru = v and reaches line 4 in the
second iteration with the basis [b1b2] = [uv] and l = 2. This,
however, is exactly the same state as in the first iteration of the LLL
reduction of [uv]. Hence, it follows that the LLL reduction of [wu]
will require exactly one iteration more than the LLL reduction of
[uv]. Repeating the same argument reveals that the reduction of
[wu]M = [uv]M2 requires one iteration more than that of [wu]
and hence two iterations more than the reduction of [uv]. By induc-
tion, it follows that the LLL reduction of

[b1b2] = [uv]Mk−1 , (18)

where M is given in (15), requires k − 1 iterations more than the
reduction of [uv] and hence at leastK ≥ k LLL iterations in total.

Discussion. Proposition 1 implies that there is no upper bound on
the number of LLL iterations for the set of lattices with generator
matrices taken from R

m×n. This result is immediately applicable to
the primal and dual Rayleigh model with N ≥ 2, since the distri-
butions of BP and BD do not prevent that their respective first two
columns occasionally conform with (18).

Note also that the lengths of the basis vectors are completely
irrelevant for this result. In fact, the number of LLL iterations is
invariant to scaling of B [8] and the basis vectors could thus be as-
sumed to satisfy any given length constraint. Proposition 1 rather
relies on generator matrices with arbitrarily large condition number,
which exist both under the primal and dual Rayleigh model. Indeed,
the construction in (18) yields poorly conditioned generator matrices
since the condition number ofMk is κ(Mk) = κ(M)k ≈ r2k.
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3.3. Average-Case Analysis and Tail Probabilities

Based on (12), the statistics ofK can be characterized via the statis-
tical properties of κ(H) previously investigated in [12]. Specifically,
it has been shown that (E {·} denotes expectation) [12]

E {loge κ(H)} ≤ loge

N

M − N + 1
+ 2.240 (19)

for anyM ≥ N . Combining (12) for n = 2N and (19) immediately
yields the bound

E {K} ≤ 4N2

„
logt

N

M−N+1
+

2.240

loge t

«
+ 2N ,

which implies polynomial average complexity

E {K} = O(N2 log N).

It was furthermore shown in [12] that for x ≥ M−N+1

P

„
κ(H) >

xN

M − N + 1

«
≤ 1

2π

„
C

x

«2(M−N+1)

(20)

with a universal constant C, 5.013 ≤ C ≤ 6.298. By (12) it follows
that the tail probability of K, i.e., the probability that K exceeds a
given value k, is upper bounded according to

P(K ≥ k) ≤ P
“
κ(H) ≥ t

k−n

n2

”
.

Invoking (20) then implies that for k ≥ 4N2 logtN + 2N we have

P(K ≥ k) ≤ βαk

where

α � t
−

M−N+1

2N2 < 1, β �
1

2π

 
CN t

1
2N

M−N+1

!2(M−N+1)

. (21)

The above results are summarized in the following proposition.

Proposition 2 The average number of LLL iterations required to
reduce a random basis generated according to either the primal or
dual Rayleigh model is polynomial and satisfies

E {K} ≤ 4N2

„
logt

N

M−N+1
+

2.240

loge t

«
+ 2N . (22)

Furthermore, the tail probability ofK decays exponentially, i.e., for
k ≥ 4N2 logtN + 2N it holds that

P(K ≥ k) ≤ βαk, (23)

where α < 1 and β are given by (21).

3.4. The Complex Case

We have so far only considered the real valued version of the LLL al-
gorithm. However, our analysis straightforwardly carries over to the
complex LLL algorithm presented in [7]. In particular, the average
number of iterations, KC, required by the complex LLL algorithm
when applied to a complex channel matrix H with i.i.d. complex
Gaussian elements satisfies

E {KC}≤N2

„
logt

N

M−N+1
+

2.240

loge t

«
+ N.

Furthermore, the worst-case number of iterations can also be shown
to be unbounded. We note that [7], with reference to [6], incorrectly
states O(n2 log B) as an upper bound on the number of LLL itera-
tions.

4. CONCLUSIONS

We have shown that it is a misconception that the LLL algorithm
will run in polynomial time when applied in wireless MIMO sys-
tems. In particular, for i.i.d. Rayleigh fading there exists no up-
per bound on the number of LLL iterations required, let alone one
which grows polynomially with the dimensions of channel matrix.
This conclusion relies heavily on the fact that real-valued bases may
have arbitrarily large condition number. While this result, strictly
speaking, is restricted to real-valued computation models, state-of-
the-art floating- and fixed-point implementations require high arith-
metic precision to guarantee algorithm stability. Hence, the problem
of very large worst-case execution time persists in that realm.

Further investigations are required if the algorithm is to be seri-
ously considered for implementation in real-time MIMO systems. It
is particularly important to understand how early termination of the
LLL algorithm will affect the performance of LR-aided detection
and precoding and when (i.e., after how many iterations) to force-
fully terminate the LLL algorithm. The results in Section 3.3 repre-
sent a step towards answering these questions.
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