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ABSTRACT

In wireless channels, maximum-likelihood (ML) block noncoher-
ent detection offers significant gains over conventional symbol-
by-symbol detection when the fading channel coefficients are not
available and cannot be estimated at the receiver. Certainly, in gen-
eral the complexity of the block detector grows exponentially with
the symbol sequence length. However, it has been recently shown
that for M-ary phase-shift keying (MPSK) modulation block non-
coherent detection can be performed with polynomial complexity.
In this work, we develop a new ML block noncoherent detector
for MPSK transmission of arbitrary order and multiple-antenna
reception. The proposed algorithm introduces auxiliary spherical
variables and constructs with polynomial complexity a polynomial-
size set which includes the ML data sequence. It is shown that the
complexity of the proposed algorithm is polynomial in the sequence
length and at least one order of magnitude lower than the complexity
of computational-geometry based noncoherent detection algorithms
that have been developed recently.

Index Terms —Maximum-likelihood sequence detection, non-
coherent detection, single-input multiple-output channels.

1. INTRODUCTION

Multiple-antenna wireless systems are well known to attain
increased orders of diversity resulting in substantially higher
system capacity compared to single-antenna systems. When
perfect channel state information (CSI) is available or can be
retrieved through adequate channel estimation at the receiver,
several coherent detection schemes can be followed. How-
ever, the very nature of wireless channels suggests rapidly
changing channel conditions, thus making channel estimation
complex and cost inefficient. Even when channel fades occur
slowly, phase distortion is introduced and must be accounted
for at the receiver end to avoid performance loss.
Alternatively, noncoherent detection has been studied

extensively [1]-[5] and implemented in modern digital com-
munication standards. Since noncoherent detection does not
need any channel knowledge or estimation, it is applicable
even in most degraded and fast fading channels, making
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it much more attractive than coherent detection under un-
favorable channel conditions. Due to the memory in the
received data sequence induced by fading channel mem-
ory, noncoherent maximum likelihood sequence detection
(MLSD) has recently been a subject of extensive research
[1]-[4]. Optimal receivers that suffer from exponential com-
plexity with respect to the data sequence length as well as
approximate and sub-optimal detection algorithms were de-
veloped in [1], [5]. However, very recent studies [3], [4]
proved the existence of efficient noncoherent MLSD receiver
schemes that attain optimality with polynomial complexity
by utilizing computational-geometry (CG) based optimiza-
tion algorithms.
The present work shows that noncoherent MLSD of M-

phase symbols in single-input multiple-output (SIMO) sys-
tems can be expressed as a rank-deficient quadratic formmax-
imization problem and computed efficiently in polynomial
time. We follow a completely different approach than [3],[4]
and, inspired by the work in [8],1 construct a polynomial-
complexity noncoherentMLSDmethod that is at least one or-
der of magnitude faster than the method in [4]. The proposed
method that is developed in this present work is also applica-
ble to any arbitrary-orderMPSKmodulation. Further analysis
shows that the computational complexity depends only on the
data sequence length and receive diversity order and does not
depend on SNR.

2. SYSTEMMODEL

We consider the transmission of a sequence ofN uncodedM -
ary phase-shift keying (MPSK) data symbols s =

√
P [s1,

s2, ..., sN ]T where P is the constant transmitted power per
symbol and si is selected from an M -ary alphabet AM

�
=

{ej π

M
(2m+1)|m = 0, 1, . . . , M − 1}, i = 1, 2, . . . , N . The

data sequence is shaped and transmitted over D independent
1The work in [6]-[8] considers the efficient computation of the binary

vector that maximizes a rank-deficient quadratic form. The authors prove the
existence of the optimal solution and develop a method that computes it in
polynomial time. Although rank-deficient quadratic form maximization was
also treated in [9] based on CG principles, the method in [6]-[8] requires at
least one order of magnitude less complexity compared to the method in [9].
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and identically distributed (i.i.d.) frequency flat Rayleigh fad-
ing wireless channels. The downconverted and pulse-matched
equivalent received signal at the ith antenna is

yi = his + ni (1)

where hi denotes the coefficient of the channel between the
transmit antenna and the ith receive antenna and is modeled
as zero-mean complex Gaussian with variance σ2

h. Further-
more, ni represents additive white complex Gaussian noise
(AWGN) and is modeled as a zero-mean complex Gaussian
vector with covariance matrix σ2

nI. We collect all received
data from the D receive antennas and form the N × D “re-
ceived matrix”Y �

= [y1y2 . . .yD].
The D channel coefficients hi, i = 1, 2, . . . , D, are as-

sumed unknown to both the transmitter and the receiver, im-
plying that noncoherent detection has to be performed. The
MLSD decision for the transmitted sequence s given theN ×
D observation matrixY maximizes the conditional probabil-
ity density function (pdf) of Y given s. Thus, the optimal
decision is given by

sopt
�
= arg max

s∈AN

M

f(Y|s) = arg max
s∈AN

M

f(y1,y2, . . . ,yD|s).
(2)

Due to independence among the D channels, the columns
of the received matrix Y are i.i.d. given the transmitted se-
quence s. Therefore,

sopt = arg max
s∈AN

M

D∏
i=1

f(yi|s) = arg max
s∈AN

M

D∑
i=1

ln f(yi|s).
(3)

The conditional received vector at the ith antenna given the
transmitted sequence is yi|s = his + ni where his is a sin-
gular complex Gaussian vector independent from ni, i =
1, 2, . . . , D. The following proposition identifies the pdf of
yi|s. The proof is omitted due to lack of space.
Proposition 1 The sum of a singular complex Gaussian vec-
tor and an independent complex Gaussian vector results in a
complex Gaussian vector. �

According to Proposition 1, since hi and ni are both zero-
mean, yi|s is a zero-mean complex Gaussian vector with co-
variance matrixR = σ2

nI + Pσ2
hss

H . As a result, the MLSD
receiver of (3) becomes

sopt = arg max
s∈AN

M

D∑
i=1

ln

(
1

πN |R| exp
(−yH

i R−1yi

))

= arg max
s∈AN

M

D∑
i=1

(
−yH

i R−1yi + ln
1

πN |R|
)

.

(4)

Using |A + cdH | = |A|(1 + dHA−1c) [10], we compute
|R| = σ2N

n (1 + NP
σ2

h

σ2
n

). Therefore, |R| is not a function of

s and, hence, can be dropped from the detector in (4). More-
over, using the matrix inversion lemma, the inverse of R be-
comes R−1 = 1

σ2
n

(
I− σ2

h

σ2
n
+NPσ2

h

ssH
)
, implying that the

decision rule in (4) is simplified to

sopt = arg max
s∈AN

M

D∑
i=1

1

σ2
n

(
−‖yi‖2 +

σ2
h

σ2
n + NPσ2

h

yH
i ssHyi

)

= arg max
s∈AN

M

D∑
i=1

|yH
i s|2

= arg max
s∈AN

M

‖YHs‖. (5)

If the above optimization is performed through exhaustive
search, then it costs O(MN ) calculations which is an in-
tractable complexity even for moderate vales of N . In the
next section, we follow an approach similar to the one of
[6]-[8] but tailored to our detection problem in (5). Specifi-
cally, we introduce 2D− 1 spherical coordinates and develop
an efficient algorithm to build a set S(YN×D) ⊂ AN

M that
consists of |S(YN×D)| = O((MN)2D−1) signal vectors, is
constructed with O((MN)2D) calculations, and contains the
optimal vector sopt in (5).

3. EFFICIENT ML BLOCK NONCOHERENT MPSK
DETECTION

We introduce 2D − 1 auxiliary hyperspherical coordinates
φ1 ∈ (−π, π], φ2, . . . , φ2D−1 ∈ (−π

2 , π
2

]
and define the

2D × 1 hyperspherical vector c̃(φ1, . . . , φ2D−1)
�
= [sinφ1,

cosφ1 sin φ2, . . . , cosφ1... cosφ2D−2 sin φ2D−1,

cosφ1... cosφ2D−2 cosφ2D−1]
T as well as the D × 1 hyper-

spherical complex vector c(φ1, . . . , φ2D−1)
�
= c̃1:D,1(φ1,

. . . , φ2D−1) + jc̃D+1:2D,1(φ1, . . . , φ2D−1). Then, the prob-
lem in (5) is rewritten as

sopt = arg max
s∈AN

M

‖YHs‖ = (6)

arg max
s∈AN

M

max
φ1∈(−π,π]

max
φ2,...,φ2D−1∈(−π

2
, π

2
]

|sHYc(φ1, . . . , φ2D−1)|

due to Cauchy-Schwartz Inequality which states that for any
v ∈ CD |vHc(φ1, . . . , φ2D−1)| ≤ ‖v‖‖c(φ1, . . . , φ2D−1)‖
with equality if and only if φ1, . . . , φ2D−1 are the hyperspher-
ical coordinates of v. Furthermore, ∀v ∈ CD, �{vH

c(φ1, . . . , φ2D−1)} ≤ |vHc(φ1, . . . , φ2D−1)|, with equality
if and only if φ1, . . . , φ2D−1 are the hyperspherical coordi-
nates of v. Hence, the optimization problem in (6) becomes

sopt = arg max
s∈AN

M

max
φ1∈(−π,π]

max
φ2,...,φ2D−1∈(−π

2
, π

2
]
�{

sHYc(φ1, . . . , φ2D−1)}. (7)
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We interchange themaximizations in (7) and obtain the equiv-
alent problem

max
φ1∈(−π,π]

max
φ2,...,φ2D−1∈(−π

2
, π

2
]

N∑
n=1

max
sn∈AM

�{

s∗nYn,1:Dc(φ1, φ2, . . . , φ2D−1)}. (8)

For a given set of angles (φ1, . . . , φ2D−1) ∈ (−π, π] ×(−π
2 , π

2

]2D−2, the maximizing argument of each term of the
sum in (8) depends only on the corresponding row of Y. As
φ1, φ2, . . . , φ2D−1 vary, the decision in favor of sn is main-
tained as long as a decision boundary is not crossed. Due to
the structure of AM , the M

2 decision boundaries that affect
the maximization in (8) are given by

Yn,1:Dc(φ1, . . . , φ2D−1) = Aej2π k

M ,

k = 0, 1, . . . ,
M

2
− 1, n = 1, 2, . . . , N. (9)

The decision boundaries in (9) can be rewritten as	{e−j2π k

M

Yn,1:Dc(φ1, . . . , φ2D−1)} = 0, k = 0, 1, . . . , M
2 − 1, n =

1, 2, . . . , N , which is equivalent to

Ỹl,1:2D c̃(φ1, . . . , φ2D−1) = 0, l = 1, . . . ,
MN

2
, (10)

where Ỹ
�
=

[
	(Ŷ) �(Ŷ)

]
, Ŷ �

= Y ⊗ [1 ej 2π

M ej 4π

M . . .

ej 2π

M (M

2
−1)]T , and ⊗ denotes Kronecker product.

The inner maximization rule in (8) motivates us to define
a decision function s that maps a set of angles (φ1, φ2, . . .

, φ2D−1) to a certain value of set AM according to

s(yT ; φ1, φ2, . . . , φ2D−1)
�
=

arg max
s∈AM

�{
s∗yT c(φ1 . . . , φ2D−1)

}
(11)

for any y ∈ C
D. Then, for the given N × D matrix Y,

each set of angles in (−π, π]× (−π
2 , π

2

]2D−2 is mapped to a
candidate MPSK vector

s(YN×D; φ1, . . . , φ2D−1)
�
=⎡

⎢⎢⎢⎣
s(Y1,1:D; φ1, . . . , φ2D−1)
s(Y2,1:D; φ1, . . . , φ2D−1)

...
s(YN,1:D; φ1, . . . , φ2D−1)

⎤
⎥⎥⎥⎦ (12)

and the optimal vector sopt in (7) belongs to the reduced set⋃
φ1∈(−π,π]

⋃
φ2,...,φ2D−1∈(−π

2
, π

2
] s(YN×D; φ1, . . . , φ2D−1).

Furthermore, since opposite M -ary vectors result in the
same metric in (5), we can ignore the values of φ1 in(−π,−π

2

] ∪ (
π
2 , π

]
and consider φ1, . . . , φ2D−1 ∈ Φ

�
=(−π

2 , π
2

]
. Finally, we collect all candidate M -ary vectors to

set

S(YN×D)
�
=

⋃
φ1,...,φ2D−1∈Φ

{s(YN×D; φ1, . . . , φ2D−1)} ⊆ AN
M ,

(13)
hence,

sopt = arg max
s∈S(Y)

‖YHs‖. (14)

Therefore, sopt belongs to a set S(YN×D) whose cardinal-
ity is later proved to be |S(YN×D)| = O((MN)2D−1) and
construction is achieved with complexityO((MN)2D).
From (11), we observe that the rows of the MN

2 × 2D

matrix Ỹ determine MN
2 hypersurfacesF(Ỹ1,1:2D)

,F(Ỹ2,1:2D), . . . ,F(ỸMN

2
,2:D) that partition the hypercube

Φ
2D−1 into K cells C1, C2, . . . , CK such that

⋃K

k=1 Ck =
Φ

2D−1, Ck ∩ Cj �= 0 ∀ k �= j, with each cell Ck corre-
sponding to a unique sk ∈ AN

M . Let {i1, i2, . . . , i2D−1} ⊂
{1, 2, . . . , MN

2 } be a subset of 2D − 1 indices (that corre-
spond to the MN

2 hypersurfaces) and φ(ỸMN

2
×D; i1, . . . ,

i2D−1) ∈ Φ
2D−1 equal the vector of coordinates of the inter-

section of hypersurfaces F(Ỹi1,1:2D), . . . ,F(Ỹi2D−1,1:2D).
It can be shown that a “collection” of 2D − 1 hypersurfaces,
say F(Ỹi1,1:2D),F(Ỹi2,1:2D), . . . ,F(Ỹi2D−1,1:2D), has a
unique intersection (which is a vertex of a cell) if and only if
no more than two hypersurfaces originate from the same row
of the observation matrixY. Such a cell, say
C

(
ỸMN

2
×2D; i1, . . . , i2D−1

)
, is associated with a unique

vector s
(
ỸMN

2
×2D; i1, . . . , i2D−1

)
. We collect all such

vectors to set

J(ỸMN

2
×2D)

�
=

⋃
{i1,...,i2D−1}⊂{1,..., MN

2
}

{
s
(
ỸMN

2
×2D; i1, . . . , i2D−1

)}
⊆ AN

M

(15)
with cardinality |J(ỸMN

2
×2D)| =

∑D−1
n=0

(
N
n

)(
N−n

2D−(1+2n)

)
(

M
2

)2D−1−n
= O((MN)2D−1). Thus, J(ỸMN

2
×2D) con-

tains O((MN)2D−1) M -ary vectors. Then, it can be shown
[8] that all candidate vectors form the set

S(YN×D) = J(ỸMN

2
×2D) ∪ . . . ∪ J(ỸMN

2
×2)

=

D−1⋃
d=0

J(ỸMN

2
×2(D−d)).

(16)

To summarize, we have utilized 2D − 1 auxiliary spheri-
cal coordinates, and partitioned the hypercube Φ

2D−1 into
O((MN)2D−1) cells associated with unique M -ary vectors
that constitute the set S(YN×D) ⊆ AN

M which includes sopt

in (5). Therefore, the initial detection problem in (5) has been
converted into a maximization amongO((MN)2D−1) candi-
date vectors.
The construction of S(YN×D) is of special interest since

it determines the overall performance of the proposedmethod.
According to (16), it boils down to the parallel construction of
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J(ỸMN

2
×2d), for d = 2D, 2D − 2, . . . , 2, which can be also

fully parallelized since cells in the hypersurface arrangement
are examined independently from each other. It can be shown
that the decision function in (11) determines definitely the
corresponding symbol sn if and only if no hypersurface orig-
inates from Yn,1:d. For the hypersurfaces that pass through
the cell intersection, the rule in (11) becomes ambiguous. In
such a case, definite determination of sn is attained if φ2D−1

is set to π
2 and (11) is examined at the intersection of the same

hypersurfaces except from the hypersurface of interest.
The algorithm for the construction of S(YN×D) is avail-

able at http://www.telecom.tuc.gr/∼karystinos. The algo-
rithm visits independently the |S(YN×D)| = O((MN)2D−1)
intersections and computes the candidate vector in AN

M for
each intersection. The cost of the algorithm for each candi-
date vector is O(MN). Therefore, the overall complexity
for the construction of S(YN×D) becomes O((MN)2D−1)
O(MN) = O((MN)2D).
We recall that the corresponding complexity of [4] is

O((MN)2DLP(MN, 2D)) where LP(MN, 2D) is the com-
plexity of a linear programming (LP) optimization problem
with MN inequalities and 2D variables. Provided that the
worst-case complexity of LP(MN, 2D) in linear in MN

[11], it turns out that the method in [4] costs O((MN)2D+1)
calculations, i.e., one order of magnitude more calculations
than the proposed algorithm. In addition, [4] treats only the
caseM = 2 (BPSK) andM = 4 (QPSK).
As an illustration, we consider a 1× 2 SIMO system with

8PSK transmissions and unknown channel state information
at the receiver. We conduct 1000 MC simulations and in Fig.
1 we plot the performance of the maximal ratio combining
(MRC) receiver, the conventional 1-lag receiver, and our pro-
posed ML noncoherent block MPSK receiver of complexity
O((MN)2D), for block lengths N = 8 and 14, respectively.
The ML block noncoherent receiver outperforms the conven-
tional one and approaches the performance of the coherent
ML receiver. Our algorithm appears as an efficient noncoher-
ent MLSD method that is applicable to any order of MPSK
constellation.
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