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ABSTRACT

The performance of multiuser detection (MUD) algorithms for code-
division multiple-access (CDMA) systems depends on the accuracy
of channel estimates. Such estimates are typically affected by er-
rors, which can lead to significant degradation of the performance.
In this paper, we develop a MUD technique which is based on prob-
ability constrained optimization of the minimum mean-square error
(MMSE) multiuser receiver, and is robust against channel estima-
tion errors. Its relationship to the recently proposed robust worst
case optimization based MUD technique is established. The uncer-
tainty parameter of the worst case based design is quantified in terms
of the outage probability used in the probability constrained design
and second-order statistics of the channel estimation errors. Simu-
lation results demonstrate the potential of the proposed technique to
outperform the existing robust techniques.

Index Terms— Code division multiaccess, robustness, signal
detection, multiuser channels, optimization methods.

1. INTRODUCTION

Code-division multiple-access (CDMA) schemes have been a focus
of extensive research [1]. A large number of multiuser detection
(MUD) algorithms have been proposed [1]. The optimal maximum
likelihood (ML) detector [2] is prohibitively expensive for practi-
cal applications and, hence, suboptimal linear MUD techniques have
gained much interest as computationally attractive alternatives to the
ML detector [3], [4]. Traditional MUD techniques assume that the
channel and, therefore, the signature of the desired user are known
precisely [3], [4]. In practice, the channel estimates are obtained ei-
ther by using training sequences [4] or blindly [5]. Such estimates
are typically affected by errors that are ignored in subsequent de-
tection. When the exact channel is unavailable and its erroneous
estimate is used, the performance of linear MUD algorithms may
degrade severely [6], [7]. Therefore, CDMA MUD methods ro-
bust against user signature estimation errors are desired. Such robust
MUD procedure has been developed in [7] using the worst case op-
timization based approach of [8]. In the worst case based approach,
the performance of the MUD is optimized for the least favorable user
signature estimation error. The least favorable user signature estima-
tion error is introduced by means of bounding the norm of the user
signature error vector using an uncertainty parameter that is chosen
in ad hoc manner. However, if the training mode is used, the user
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signature estimation error is known to be Gaussian distributed [9],
and, therefore, its norm is χ2 distributed and not bounded. It has
been proposed in [9] to bound the signature estimation error in prob-
ability. However, the robust MUD problem formulations in [7] and
[9] are essentially the same. Indeed, in both formulations the user
signature error vector is assumed to be norm bounded, and the MUD
performance is optimized for the least favorable user signature error.

In this paper, we develop a rigorous approach to MUD problem
that provides the robustness against desired user signature estima-
tion errors with a certain selected probability. Thus, only the desired
user signature estimation errors which occur with sufficiently high
probability are considered, while the errors whose probability is low
are discarded. The problem which we consider is different from the
problems considered in [7] and [9], where the mean-square error
(MSE) is minimized for all user signature errors from the known un-
certainty region. However, we show that the probability constrained
robust MUD is related to the worst case based MUD of [7]. The es-
tablished relationship leads to a straightforward interpretation of the
worst case design parameter in terms of the MUD outage probability
and second-order statistics of the channel estimation errors.

2. BACKGROUND

We consider aK-user synchronous CDMA system.1 Assuming that
there is no inter-symbol interference (ISI), the received discrete-time
baseband signal can be modeled as [1]

x(n) =
K∑

k=1

Akbk(n)sk + v(n) (1)

where n is the sample index, x(n) = [x(nTs), x(nTs + Tc),
. . . , x(nTs + (L − 1)Tc)]

T is the received data vector, Ts is the
symbol period, L is the spreading factor, Tc = Ts/L is the chip
period, Ak and bk(n) are the received signal amplitude and the nth
data symbol of the kth user, respectively, v(n) = [v(nTs), v(nTs +
Tc), . . . , v(nTs + (L − 1)Tc)]

T is the zero-mean additive random
uncorrelated Gaussian noise vector with variance σ2, sk = [sk(0),
sk(Tc), . . . , sk((L − 1)Tc)]

T is the signature vector of the kth user
with its normalized signature waveform given as

sk(m) =

L−1∑
l=0

ck(l)gk(m − lTc) (2)

ck = [ck(0), ck(1), . . . , ck(L − 1)]T is the spreading code vector
of the kth user, gk(m) is the chip waveform convolved with the kth
user channel impulse response, and (·)T stands for the transpose.

1Note that the extension to asynchronous system is straightforward.
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We use here the standard assumptions that the chip sequence period
is the same as the symbol period; for each user, the data symbols
are zero-mean independent random variables that are drawn from
the binary phase shift keying (BPSK) constellation; the channel is a
finite impulse response (FIR) filter whose impulse response is much
shorter than Ts; the channels are quasistatic; and the data symbols of
different users are uncorrelated with each other and with the noise.

The output of a linear multiuser receiver is given by [3]

y(n) = fHx(n) (3)

where f = [f0, f1, . . . , fL−1]
T is an L × 1 complex vector of the

receiver coefficients, and (·)H stands for the Hermitian transpose.
The received output y(n) is used for symbol detection.

A popular approach to optimize the MUD vector of the receive
coefficients f is to minimize the output energy at the receiver, or
equivalently, minimize the MSE. Mathematically, assuming that the
first user is the desired one, the problem can be formulated as

min
f

E{|b1(n) − fHx(n)|2}

= min
f

{1 + fHRf − dHf − fHd} (4)

where R = E{x(n)xH(n)} is the data covariance matrix, d =
E{x(n)b∗1(n)} is the correlation vector between the received data
vectorx(n) and the desired user symbol b1(n) ∈ {−1, 1}, andE{·}
and (·)∗ denote the statistical expectation and complex conjugate,
respectively.

The solution to the optimization problem (4) is refereed to as the
MMSE receiver and can be written as

f opt = R−1d. (5)

In practice, the exact data covariance matrix is unavailable. There-
fore, its sample estimate

R̂ =
1

N

N∑
n=1

x(n)xH(n) (6)

is typically used. To provide robustness against finite sample size
effect, it has been proposed to use the so-called diagonal loading
technique [10], i.e., to replace R̂ by R̂+γI , where γ is the constant
loading factor, and I denotes the identity matrix. It is also easy to
check that the correlation vector d can be equivalently expressed as
d = βs1, where β � A1E{|b1(n)|2}. Therefore, the practically
applicable diagonal loading based multiuser receiver can be written
as

fdl = (R̂ + γI)−1s1. (7)
An essential shortcoming of the MMSE receiver (5) as well as

the receiver (7) is that they are not robust against the desired user
signature s1 estimation errors. In [7], [8], it has been proposed to
explicitly model the actual user signature s̃1 as

s̃1 = s1 + e �= s1 (8)

where e denotes an unknown complex vector of the desired user
signature estimation error.

A popular approach to robust designs is based on the idea of
worst case performance optimization [8]. In application to multiuser
detection problem, this approach aims at minimizing the MSE as-
suming that e is an unknown deterministic vector that is bounded in
its norm by some known positive constant ε, i.e.,

‖e‖ ≤ ε2 (9)

where ‖ · ‖ denotes the Euclidian norm of a vector.
Then the robust worst case basedMMSE linear receiver problem

formulation can be expressed in terms of the following optimization
problem [7]

min
f

{
1 + fHR̂f + max

‖e‖≤ε2
{−(d + βe)Hf − fH(d + βe)}

}
.

(10)

The solution to the problem (10) is given by [7]

f rob =
(
R̂ + ε2τI

)−1

s1 (11)

where the positive constant β is omitted because it does not af-
fect the probability of error at the output of the symbol detector,
τ � 1/‖f‖ > 0, and the optimal value τopt is the solution of the
following equation

τ2
∥∥∥(R̂ + ε2τI)−1s1

∥∥∥2

= 1. (12)

The receiver (11) is similar to the diagonal loading based re-
ceiver (7), however, the diagonal loading coefficient ε2τ in (11) is
not a constant. Therefore, the receiver (11) can be viewed as an
adaptive diagonal loading based receiver, where the optimal diago-
nal loading coefficient is the solution of the equation (12). The dis-
advantage of the worst case based approach as applied to the robust
MUD problem is that the uncertainty coefficient ε in (9) is unknown
and is typically chosen in ad hoc way.

3. PROBABILITY CONSTRAINED ROBUST MMSE
LINEAR RECEIVER

It is more natural to model the desired user signature error e in sta-
tistical sense, rather than deterministic. Indeed, if the training mode
is used, the user signature estimation error is known to be Gaus-
sian distributed [9], and, therefore, its norm is χ2 distributed and not
bounded. It indicates that, strictly speaking, the bound (9) (the coef-
ficient ε) used in the worst case based approach is ad hoc. In this sec-
tion, we propose an alternative approach to robust design for MUD.
Specifically, using the earlier developed probability constrained opti-
mization based approach [11], we can provide the robustness against
desired user signature estimation errors with a certain selected prob-
ability.

Mathematically, the robust formulation of the MMSE linear re-
ceiver based on the probability constrained optimization approach
can be written as

min
f ,t

1 + fHR̂f + t

subject to Pre

{
−d̃

H
f − fH d̃ ≤ t

}
≥ p (13)

where p is a certain probability value, d̃ = d+βe = βs̃1, andPr{·}
stands for the probability operator. Note that the problems of this
type are referred in the optimization literature as chance constrained
or probability constrained stochastic programming problems [12].
Also note that we search for nontrivial minimizer f .

The problem (13) aims at minimizing the MSE which includes
also an unknown desired user signature estimation error e with a cer-
tain probability p. Thus, only the desired user signature estimation
errors which occur with sufficiently high probability are considered
in the formulation (13), while the user signature estimation errors
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whose probability is low are discarded. The constraint in (13) can be
alternatively viewed as a non-outage probability constraint, where
outage takes place every time when the constraint is not satisfied.
The problem (13) is different from the problem (10), where the MSE
is minimized for all user signature errors from the known uncertainty
region, no matter how likely they occur in practice.

Following [9], we assume that the desired user signature estima-
tion error e is complex circularly symmetric Gaussian distributed,
i.e.,

e ∼ NC(0, σ2). (14)
Indeed, for the optimum maximum likelihood (ML) estimate of the
user signature, the estimation error is Gaussian distributed (condi-
tioned on the training symbols) [9]. Moreover, while the Gaussian
assumption is not satisfied in the presence of residual interference,
this is still suitable assumption if the statistical property of the resid-
ual interference is unknown.

Using the assumption (14), it is easy to show that the random
variable−d̃

H
f − fH d̃ has the following real Gaussian distribution

− d̃
H

f − fH d̃ ∼ NR
(
−dHf − fHd, 2β2‖C1/2

e f‖2
)
(15)

whereCe � E{eeH} is the covariance matrix of the user signature
estimation error. Note that the covariance matrixCe can be typically
found in closed form and depends on the method used for signature
estimation. For example, the covariance matrixCe can be expressed
as a function of the spreading code, the sample size, and the noise
variance if the blind subspace-based method of [5] is used to esti-
mate the user signature. Similarly, if the least square (LS) method
of [9] (equivalent to the ML method) is used for estimating the de-
sired user signature s1, the covariance matrix Ce can be accurately
approximated for large sample sizeM as [9]

Ce ≈ σ2L

M
I . (16)

Using the error function for any real Gaussian random variable
x

erf(x) =
2√
π

∫ x

0

e−t2 dt (17)

we can find the probability Pr{x ≤ c} as follows

Pr{x ≤ c} =
1

2
+

1

2
erf

(
c − E{x}√

2E{(x − E{x})2}

)
. (18)

For the random variable −d̃
H

f − fH d̃, the probability in (13)
can be equivalently written as

Pre

{
−d̃

H
f − fH d̃ ≤ t

}
=

1

2

+
1

2
erf

(
t + dHf + fHd

2β‖C1/2
e f‖

)
.(19)

Applying (19) to the the probability constraint in (13), we obtain
the following equivalent constraint

erf

(
t + dHf + fHd

2β‖C1/2
e f‖

)
≥ 2p − 1. (20)

The constraint (20) is convex if and only if its left-hand side is posi-
tive. The latter is guarantied if 2p− 1 > 0 or, equivalently, p > 0.5.
In this case, the constraint (20) can be rewritten as

ε̃‖C1/2
e f‖ ≤ t + dHf + fHd (21)

where
ε̃ = 2erf−1(2p − 1)β (22)

and erf−1(·) denotes the inverse error function. The constraint (21)
is called the second-order cone (SOC) constraint and is convex.

The constraint (21) is tight for any optimal solution (see the for-
mal proof of this fact in [8]), and the problem (13) can be expressed
in terms of real-valued quantities as

min
f ,t

1 + fHR̂f + t

subject to ε̃2‖C1/2
e f‖2 ≤ (t + dHf + fHd)2. (23)

The solution to (23) can be found by optimizing the Lagrangian
function

L(f , t, λ) = 1 + fHR̂f + t

+λ
(
ε̃2fHCef − t2 − 2t(dHf +fHd)−(dHf + fHd)2

)
(24)

where λ is a Lagrange multiplier. Differentiating the Lagrangian
function L(f , t, λ) with respect to f , t, and λ; and setting these
partial derivatives equal to zero, we obtain, respectively

(R̂ + ε̃2λCe)f = 2λtd + 2λddHf + 2λfHdd (25)
2tλ = 1 − 2λ(dHf + fHd) (26)
ε̃2fHCef = t2 + 2t(dHf + fHd) + (dHf + fHd)2. (27)

Inserting (25) into (26) and solving the equation, we find that

fprob = (R̂ + ε̃2λC1/2
e )−1s1 (28)

where the positive constant β is omitted because it does not affect
the probability of error at the output of the symbol detector. Simi-
larly, the analytical solution for t can be easily found form (26), and
written as

t = 1/2λ − dHf − fHd. (29)

Applying (28) and (29) to (27) yields

4ε̃2λ2
∥∥∥(R̂ + ε̃2λC1/2

e )−1s1

∥∥∥2

= 1. (30)

The optimal value of the Lagrange multiplier λopt is then a zero of
(30) that can be solved using the efficient Newton-type numerical
procedure developed in [7] for solving similar equation (12) for τ .

Note that the probability constrained robust MMSE linear re-
ceiver (28), (30) is equivalent to the worst case based linear receiver
(11), (12) if the LS method is used for estimating the desired user
signature and the covariance matrixCe is given by (16). In this case
the probability constrained robust MMSE linear receiver is simpli-
fied as

fprob = (R̂ + ε2λI)−1s1 (31)

4ε2λ2
∥∥∥(R̂ + ε2λI)−1s1

∥∥∥2

= 1 (32)

where
ε = 2erf−1(2p − 1)βσ

√
L/

√
M. (33)

Therefore, the worst case and the probability constrained optimiza-
tion based designs are related to each other. Equation (33) explicitly
quantifies this relationship providing an interpretation of the worst
case design parameter ε (the radius of the uncertainty set) in terms
of the outage probability and second-order statistics of the user sig-
nature estimation error.
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Fig. 1. BERs versus SNR.

4. SIMULATION RESULTS

A seven-user synchronous CDMA system is considered. The BPSK
modulation and binary Golden spreading code of the length L = 31
are used. The interference-to-noise ratio (INR) is taken to be equal
to 20 dB for all interfering users. A total 1000 runs is used to obtain
each point of the bit error rate (BER) curves.

The following MUD algorithms are used: the linear MMSE re-
ceiver (5) with the sample data covariance matrix (6) and exact s1

(called as clairvoyant MMSE receiver); the receiver (7) with the di-
agonal loading parameter γ = 20σ2 and 100σ2, where σ2 = 1
(called as diagonal loading based receiver); the receiver (11), (12)
with the uncertainty parameter ε2 chosen as recommended in [7] and
equal to 0.7

√
L (called as worst case based receiver); and the pro-

posed receiver (31)-(33) with the outage probability pout = 1−p =
0.005 (called as probability constrained based receiver). The blind
subspace based estimate of the desired user signature s1, which is
obtained from 30 data vectors using the technique of [5], is used for
the diagonal loading based, the worst case based, and the probability
constrained based receivers.

The channel distortion is modeled as an FIR filter with four
taps and the channel impulse response h = [δ0, δ1e

jφ1 , 0, δ3e
jφ3 ]T ,

where δ0, δ1, and δ3 are the amplitudes of the first, the second and
the fourth taps, respectively, and φ1 and φ3 are the phases of the sec-
ond and the forth taps. In each simulation run, δ0 is randomly chosen
from the interval [0.9, 1.1], and δ1 and δ3 are randomly chosen from
the interval [0.45, 0.55]. Similarly, φ1 and φ3 are randomly drawn
from a uniform distribution over the interval [0, 2π].

Fig. 1 shows the BERs of the aforementioned multiuser receivers
tested versus the signal-to-noise ratio (SNR) of the desired user. It
can be seen that the robust receivers with adaptive diagonal loading,
i.e., the worst case based receiver (11), (12) and the probability con-
strained based receiver (31)-(33) perform better than other receivers,
and the probability constrained based receiver outperforms the worst
case based receiver, perhaps, due to the better selection of the uncer-
tainty parameter ε.

5. CONCLUSIONS

The problem of robustness of multiuser receivers against user sig-
nature estimation error has been addressed, and a new MUD that
guarantees the robustness against user signature errors with a certain
selected probability has been proposed. The relationship between
the proposed MUD and the worst case based MUD is found. The
uncertainty parameter of the latter detector is quantified in terms of
the outage probability of the proposed probability constrained based
MUD and the second-order statistics of the user signature estimation
error. Simulation results have validated an improved performance of
the proposed approach as compared to the existing linear MUD al-
gorithms.
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