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ABSTRACT
Semidefinite relaxation (SDR) is a high-performance efficient ap-
proach to MIMO detection especially for the BPSK or QPSK con-
stellations. Recently, a number of research endeavors have focused
on extending SDR to the case of 16-QAM constellations. This pa-
per reports two interesting and useful results on this problem. First,
we show that two of the existing 16-QAM SDR receivers, namely
the polynomial-inspired SDR (PI-SDR) and bound-constrained
SDR (BC-SDR) methods, are equivalent. Second, we develop a
specialized interior-point algorithm for the implementation of BC-
SDR. The proposed algorithm is computationally efficient exploit-
ing the BC-SDR structures, and enables us to handle larger prob-
lem sizes in practice.

Index Terms— MIMO detection, semidefinite relaxation, convex
optimization

1. INTRODUCTION

Multiple-input-multiple-output (MIMO) detection using semidef-
inite relaxation (SDR) [1–6] has recently received increasing at-
tention. Being a constellation dependent technique, SDR has been
shown to provide considerably better symbol error performance
than the linear and decision-feedback MIMO receivers. Though
not an optimal maximum-likelihood (ML) receiver, SDR guaran-
tees a worst-case polynomial-time complexity in the number of
inputs. In comparison, the currently best known optimal ML im-
plementations, namely sphere decoding [7, 8], do not have such a
guarantee [9] and would be too expensive to employ for large num-
ber of inputs. (Note that the above argument may be inapplicable
to suboptimal ML variants of sphere decoding.)

SDR was first proposed for the BPSK and QPSK constella-
tions [1, 2], in which cases near-optimal performance was em-
pirically observed. Very recently, a rigorous theoretical study
has confirmed that BPSK SDR can actually achieve the full di-
versity [10]. An extension to MPSK has been reported in [3].
Presently there are several concurrent works competing in the
case of 16-QAM constellations. The first endeavor of 16-QAM
SDR is the polynomial-inspired SDR (PI-SDR) method by Wiesel
et al. [4]. Interestingly, PI-SDR is shown to be a bidual of the ML
(or achieves an optimal Lagrangian dual lower bound of the ML).
Later, Sidropoulos et al. proposed a bound-constrained SDR (BC-
SDR) method [5] that has the simplest structures among the vari-
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ous 16-QAM SDRmethods. Mobasher et al. formulated a class of
SDR problems that is applicable to any kind of symbol constella-
tions [6]. Mobasher’s approach is sophisticated, but its complexity
requirement is also the highest among the various SDR methods.

The contributions of this paper are twofold. First, we prove
that PI-SDR and BC-SDR are indeed equivalent. Specifically, the
optimal values of the two SDR problems are shown to be identical.
Second, the implementations of the existing 16-QAM SDR works
rely on general-purpose solvers, such as SeDuMi [11]. We develop
a specialized solver for BC-SDR that runs many times faster than
general-purpose solvers. This newly developed solver enables us
to handle larger problem sizes, such as the 40×40 16-QAM system
in which no test has been conducted in the previous SDR works.

2. PROBLEM FORMULATION

We consider a standard MIMO detection problem in which the
received signal is modeled as

ỹ = H̃s̃ + ṽ (1)

where ỹ ∈ C
M̃ is the received vector, s̃ ∈ C

Ñ is the transmitted
symbol vector, H̃ ∈ C

M̃×Ñ is the MIMO channel, ṽ is com-
plex circular additive white Gaussian noise, M̃ is the number of
receiver antennas, and Ñ is the number of transmitter antennas.
Each element of s̃ is drawn from a constellation set, denoted by S .

Here, our emphasis is placed on the 16-QAM constellations
where S = { s = sR + jsI | sR, sI ∈ {±1,±3} }. Let us define

y =

[�{ỹ}
�{ỹ}

]
, s =

[�{s̃}
�{s̃}

]
, H =

[�{H̃} −�{H̃}
�{H̃} �{H̃}

]
,

M = 2M̃ , and N = 2Ñ . The complex-valued M̃ × Ñ 16-
QAM signal model in (1) can be equivalently represented by a
real-valued, virtuallyM ×N 4-PAM model, given as follows

y = Hs + v (2)

where s ∈ {±1,±3}N and v is defined in the same way as y.
The following is the ML detection problem of (2):

min
s∈{±1,±3}N

‖y −Hs‖22 (3)

The (globally) optimal solution of (3), or the ML decision, pro-
vides superior detection performance. However, it is not easy at
all to solve (3) optimally. The currently best known optimal ML
approach is sphere decoding [7], which has been practically found
to be computationally very attractive for small to moderateN (say,
for N ≤ 20). However, it is now understood that the sphere de-
coding complexity would become prohibitive for largeN [9].
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3. REVIEW OF TWO 16-QAM SDR DETECTORS

SDR is a suboptimal ML approach based on semidefinite program-
ming. Unlike sphere decoding, the SDR complexity is polynomial
in N . Here we review two 16-QAM SDR MIMO detection meth-
ods, namely PI-SDR [4] and BC-SDR [5].

Let us consider the following problem which can be verified
to be equivalent to the ML problem in (3):

min
S∈SN ,s∈RN

tr(HT HS)− 2sT HT y + ‖y‖22
s.t. S = ssT , Sii ∈ {1, 9}, i = 1, . . . , N

(4)

where S is a slack variable, SN is the set ofN×N real symmetric
matrices, Sij is the (i, j)th element of S, and tr(·) is the trace
operator. In BC-SDR, we consider a relaxation of (4) given by

min tr(HT HS)− 2sT HT y + ‖y‖22
s.t. S � ssT , 1 ≤ Sii ≤ 9, i = 1, . . . , N

(5)

(In the above equation, we assume the tacit understanding that S
and s are the optimization variables.) Here, the discrete constraints
Sii ∈ {1, 9} are relaxed to 1 ≤ Sii ≤ 9, and a semidefinite re-
laxation S � ssT is used in place of the nonconvex constraint
S = ssT [whereA � B means that A −B is positive semidefi-
nite (PSD)]. The resultant problem in (5) is a semidefinite program
(SDP), whose globally optimal solution can be efficiently obtained
by available interior-point methods [11, 12].

Once an optimal solution associated with (S, s) is obtained,
our next step is to use the solution to approximate the ML solu-
tion. For example, we can simply round s to the nearest point in
{±1,±3}N which requires only a straightforward quantization.
Another method that is more popular in practice is the Gaussian
randomization; see [2, 5] for the details.

PI-SDR takes on a rather different direction. It uses the fol-
lowing polynomial relation

u ∈ {1, 9} ⇐⇒ (u− 1)(u− 9) = 0 ⇐⇒ u2 − 10u + 9 = 0

to reformulate the ML problem in (4) as

min
S,s,U,u

tr(HT HS)− 2sT HT y + ‖y‖22
s.t. S = ssT , U = uuT

d(S) = u, d(U)− 10u + 91N = 0

(6)

where d : R
N×N → R

N is the diagonal operator that extracts
the main diagonals of its input to form a vector, and 1N stands
for the N -dimensional all-one vector. PI-SDR is the semidefinite
relaxation of (6), given by

min tr(HT HS)− 2sT HT y + ‖y‖22
s.t. S � ssT , U � uuT

d(S) = u, d(U)− 10u + 91N = 0

(7)

Again, (7) is an SDP and the treatment after the relaxation step is
somewhat similar to that in BC-SDR.

It is interesting to compare the two SDR methods. Currently
it is known that
1. PI-SDR is more expensive to implement than BC-SDR, be-
cause the former contains more optimization variables [5].

2. PI-SDR is a bidual of the ML problem [4], a desirable prop-
erty from a standpoint of Lagrangian dual theory. It is not
known whether BC-SDR has such a property.

Though the two SDR methods appear to be different, we will
show in the next section that they are indeed equivalent.

4. RELATIONSHIP OF THE TWO SDRS

To prove the relationship of PI-SDR and BC-SDR, let

fBC−SDR = min tr(HT HS)− 2sT HT y + ‖y‖22
s.t. S � ssT , 1 ≤ Sii ≤ 9, i = 1, . . . , N

(8)

fPI−SDR = min tr(HT HS)− 2sT HT y + ‖y‖22
s.t. S � ssT , U � uuT

d(S) = u, d(U)− 10u + 91N = 0

(9)

denote the optimal values of BC-SDR in (5) and PI-SDR in (7),
respectively. Consider the following proposition:

Proposition 1 The bound-constrained SDR and polynomial-
inspired SDR problems achieve the same optimal value; i.e.,

fBC−SDR = fPI−SDR. (10)

Proof: First, we prove that fBC−SDR ≤ fPI−SDR. Suppose that
(S̃, s̃, Ũ, ũ) is an optimal point of (9). The feasibility condition
Ũ− ũũT � 0 implies that Ũii − ũ2

i ≥ 0 for all i. Subsequently,

0 = Ũii − 10ũi + 9 ≥ ũ2
i − 10ũi + 9 = (ũi − 1)(ũi − 9)

for all i. The inequality above is equivalent to (S̃ii−1)(S̃ii−9) ≤
0, or 1 ≤ S̃ii ≤ 9. Thus, (S̃, s̃) is feasible to (8) yielding an
objective value equal to fPI−SDR.

Second, we prove that fBC−SDR ≥ fPI−SDR. Suppose that
(Ŝ, ŝ) is an optimal point of (8). Let û = d(Ŝ), and

Û = ûû
T + D(w) (11)

where D : R
N → R

N×N is the operator that outputs a diagonal
matrix with its main diagonals being the input, andw is given by

wi = −(Ŝii − 1)(Ŝii − 9) = −(ûi − 1)(ûi − 9), (12)

for i = 1, . . . , N . Since 1 ≤ Ŝii ≤ 9, we have wi ≥ 0. It follows
that Û − ûûT = D(w) � 0. Moreover, from (11)-(12), one can
show that

Ûii − 10ûi + 9 = wi + û2
i − 10ûi + 9 = 0

for all i. Hence, (Ŝ, ŝ, Û, û) is a feasible point of (9) yielding
an objective value equal to fBC−SDR. This completes the proof of
fBC−SDR = fPI−SDR. �

Proposition 1 implies that the two SDR methods achieve the
same approximation quality with respect to the true ML optimal
value. Hence, if PI-SDR manages to achieve an optimal value
equal to the true ML, so does BC-SDR and vice versa. In fact,
simulation results in Section 6 will show that they yield very sim-
ilar symbol error performance.

5. FAST INTERIOR-POINT ALGORITHM FOR BC-SDR

This section describes a specialized interior-point algorithm that is
particularly suitable for BC-SDR.
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5.1. Specialized Interior-Point Algorithm

Our development is based on the primal-dual path-following
interior-point method by Helmberg et. al [12], which was found to
be reliable in its applications in BPSK/QPSK SDR [2] and MPSK
SDR [3]. The method, in its most general form, deals with any
SDP that takes the form

max tr(CX)
s.t. X � 0,

a−A(X) = 0, b− B(X) � 0

(13)

where X ∈ S
n, a ∈ R

k , b ∈ R
m, A : S

n → R
k and B : S

n →
R

m are linear functions. The interior-point method is iterative,
requiring at most O(

√
n) iterations to achieve a given solution

accuracy. The bulk of its computational load lies in the complexity
per iteration, which can be shown to be

O((k + m)2n2 + (k + m)n3 + (k + m)3 + n3) (14)

This complexity, however, refers only to cases where A and B
are unstructured. For certain structured A and B, it is possible to
reduce the complexity; e.g., BPSK/QPSK and MPSK SDRs [2,3].

We are interested in a special case of (13):

max tr(CX)
s.t. X � 0,

a−Ad(X) = 0, b−Bd(X) � 0

(15)

whereX ∈ S
n, a ∈ R

k, b ∈ R
m,A ∈ R

k×n andB ∈ R
m×n. In

essence, the equality and inequality constraints depend only on the
diagonals of X. By exploiting the special problem structures and
by following the principle in [12], we build a specialized interior-
point algorithm for (15). Since the derivations are quite cumber-
some and long, we provide the algorithm in Table 1 without giving
the mathematical details. The key difference of the new algorithm
lies in Step 2, where we fully utilize the problem structures to make
the search direction computations more effective. The complexity
per iteration of the proposed algorithm is shown to be

O((k + m)2n + (k + m)n2 + (k + m)3 + n3)

= O((max{k + m, n})3)
which has a significant order reduction compared to its general-
purpose counterpart; cf. (14).

5.2. Application to BC-SDR

Now let us turn our attention to the BC-SDR problem in (5). By
Schur complement, (5) can be reformulated as [5]

min
X∈SN+1

tr

([
HT H −HT y

−yT H ‖y‖22

]
X

)

s.t. X � 0, XN+1,N+1 = 1,
1 ≤ Xii ≤ 9, i = 1, . . . , N

(16)

where the relationship between (16) and (5) lies in:

X =

[
S s

sT 1

]
.

Apparently, (16) can be expressed as (15) where n = N + 1,
k = 1,m = 2N , A = [ 0, . . . , 0, 1 ], a = 1,

b =

[−1N

91N

]
, B =

[−IN 0

IN 0

]
, C = −

[
HT H −HT y

−yT H ‖y‖22

]

Table 1. Interior-point algorithm for (15). The notation ◦ stands
for the Hadamard product, and t−1 elementwise inverse.

Given a primal-dual strictly feasible initial point (X, ν, t,Z) and a so-
lution accuracy ε > 0.

Step 1. μ := [tr(ZX) + tT (b − Bd(X))]/[2(n + m)].
Step 2. Solve the linear equations

F

[
Δν

Δt

]
= g

for search directions (Δν, Δt), where

F :=

[
A(Z−1 ◦ X)AT A(Z−1 ◦ X)BT

B(Z−1 ◦ X)AT B(Z−1 ◦ X)BT + D

]

D := D((b − Bd(X)) ◦ t−1)

g :=

[
μAd(Z−1) − a

μBd(Z−1) − b + μt−1

]

Step 3. Compute the search directions

ΔZ := D(AT Δν + BT Δt)

ΔX := μZ−1 − X− Z−1ΔZX

and symmetrizeΔX byΔX := (ΔX + ΔXT )/2.
Step 4. Use line search to find a primal step-size αp ∈ (0, 1] such that

X + αpΔX � 0 and b − Bd(X + αpΔX) � 0.
Step 5. Use line search to find a dual step-size αd ∈ (0, 1] such that

Z + αdΔZ � 0 and t + αdΔt � 0.
Step 6. UpdateX := X+αpΔX,Z := Z+αdΔZ, ν := ν+αdΔν,

and t := t + αdΔt.
Step 7. If tr(ZX)+ tT (b−Bd(X)) ≤ ε (i.e., duality gap is less than

ε) then terminate & output (X, ν, t,Z); otherwise go to Step 1.

Using the specialized interior-point algorithm in Table 1, we can
solve (16) with a total complexity of O(N3.5).

One implementation aspect worth mentioning is that the pro-
posed algorithm requires a primal-dual strictly feasible point as
an initialization (some general-purpose SDP solvers do not re-
quire initialization, but explicitly providing an initialization has
the advantage of reducing the operational overheads). For BC-
SDR where C � 0, the following initialization is appropriate:

X =

[
5IN 0

0 1

]
, ν = γ, t =

[
γ1N

2γ1N

]
,Z = D(AT

ν +B
T
t)−C

where γ = −tr(C)/(N + 1).

6. SIMULATION RESULTS AND CONCLUSIONS

In the first simulation example, we compare the symbol error rates
(SERs) of the PI-SDR and BC-SDR detectors in an 8 × 8 MIMO
system [i.e., (M̃ , Ñ) = (8, 8)]. The simulation settings follow
those of a standard MIMO system [4, 5]. In the two SDR detec-
tors, we employ the Gaussian randomization [4,5] for solution ap-
proximation and the number of randomizations is 100. We also
tested several other MIMO detectors, namely i) the zero-forcing
(ZF) detector, ii) optimal sphere decoding [7], and iii) the lattice-
reduction-aided ZF (LRA-ZF) detector which has been recently
shown to have the full receive diversity [13]. The results are shown
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Fig. 1. Symbol error rates in an 8× 8 16-QAM system.
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Fig. 2. Symbol error rates in a 40× 40 16-QAM system.

in Fig. 1 and we have the following observations: First, the SERs
of PI-SDR and BC-SDR are almost identical. This provides a
strong support to the equivalent SDR relationship in Proposition 1.
A subtle point to note is that the SERs of the two SDRs are not ex-
actly equal, and that is due to the random natures of the Gaussian
randomizations. Second, for SNRs greater than 30dB, the perfor-
mance of the two SDR methods is surpassed by that of LRA-ZF.

In the second simulation example, we increase the problem
size to (M̃, Ñ) = (40, 40). Sphere decoding was not tested be-
cause its complexity is too high in this example. We also omit-
ted PI-SDR since its performance should be similar to that of BC-
SDR. The results, shown in Fig. 2, illustrate that BC-SDR provides
performance considerably better than LRA-ZF, in contrast to the
small size problem in the last example. We spectulate that LRA-
ZF has chance to outperform BC-SDR for sufficiently high SNRs,
but the required SNR values may have to be very large.

In the third simulation example, we demonstrate the efficiency
of our fast BC-SDR implementation (in Section 5) by comparing
its computational time to its counterpart using the general-purpose
solver SeDuMi. The SNR is fixed at 15dB. The test was conducted
under MATLAB, using a desktop computer with dual 2.66GHz

Table 2. Average computational time of the various methods.

Time spent (in sec.)
Ñ = M̃ = 5 Ñ = M̃ = 10 Ñ = M̃ = 20

Proposed 0.0015 0.0051 0.0288
SeDuMi 0.0362 0.0709 0.2753

CPUs. The fast BC-SDR implementation was written in C mostly,
with some minor operations using MATLAB. The results, shown
in Table 2, indicate that the fast BC-SDR implementation (‘Pro-
posed’ in the table) is many times faster than that using SeDuMi.

In conclusion, two new results for 16-QAM SDR detection
have been presented. The first, which is theoretical, shows that PI-
SDR and BC-SDR are equivalent in giving the same approxima-
tion quality. The second is practical where a specialized interior-
point algorithm is developed for fast implementation of BC-SDR.
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