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ABSTRACT

This paper presents a soft-output version of the fixed-complexity
sphere decoder (FSD) previously proposed for uncoded multi-
ple input-multiple output (MIMO) detection. Thus, the soft-FSD
(SFSD) can be used in turbo-MIMO systems to exchange extrinsic
soft-information with the outer decoder. For that purpose, the SFSD
generates a list of candidates that approximates that of the list sphere
decoder (LSD) while containing information about all the possible
bit values, removing the need for clipping. In addition, it overcomes
the two problems of the LSD: its variable complexity and the se-
quential nature of its tree search. Simulation results show that the
SFSD can be used to approximate the performance of the LSD while
having a considerably lower and fixed complexity, making the algo-
rithm suitable for hardware implementation.

Index Terms— MIMO, soft-detection, sphere decoder, turbo
decoding.

1. INTRODUCTION

It has been recently shown that the capacity of multiple input-
multiple output (MIMO) channels can be approached using a turbo-
MIMO scheme that combines a spatially-multiplexed MIMO stage
and an outer code with an interleaver operation in between [1].
At the receiver, a soft-MIMO detector is required to generate soft-
information that can be used by the outer decoder. The list sphere
decoder (LSD) is considered the most promising algorithm for soft-
MIMO detection, reducing the prohibitive complexity of the maxi-
mum likelihood detector (MLD) for large number of antennas and/or
constellation orders [1]. A large number of alternatives have been
proposed to improve the performance and, in some cases, reduce the
complexity of the LSD [2] -[6]. However, all those algorithms suf-
fer from the same problems as the original LSD, namely, its variable
complexity, depending on the noise level and the channel conditions,
and the sequential nature of its tree search.

In this paper, we present a soft-output version of the fixed-
complexity sphere decoder (FSD) previously proposed for uncoded
MIMO detection [7]. The soft-FSD (SFSD) can be used to approx-
imate the performance of the LSD while having a fixed complex-
ity. This makes the algorithm especially suitable for a parallel and
fully-pipelined hardware implementation, as previously shown for
the FSD [8]. The SFSD applies the concepts of bit-negating [6] and
path-augmentation [9] but in the context of the FSD. Previously pro-
posed fixed-complexity soft-MIMO detectors with a similar level of
performance are based on the M-algorithm [10],[11] which is shown
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here to have a higher complexity than the SFSD. Alternatives to
reduce its complexity resort back to a variable complexity [10],[11].

2. TURBO-MIMO SYSTEM MODEL

We consider the turbo-MIMO system presented in [1] for the trans-
mission of frames of Ku bits. It consists of M transmit and N re-
ceive antennas, denoted as M×N , where N ≥M . At the transmitter,
the Ku information bits are encoded using an off-the-shelf convolu-
tional or turbo code of rate Rc, where Ku = Kb · Rc. The Kb

coded bits are then interleaved and the resulting bits, denoted as b,
are mapped to symbols taken independently from a a quadrature am-
plitude modulation (QAM) constellation O of P points, forming a
sequence of Ks = Kb/ log2 P symbols. The sequence of symbols
is then split into M substreams and blocks of M · Kch symbols are
transmitted in each channel realization (i.e. block-Rayleigh fading
channel). Therefore, a frame of Kb coded bits requires the trans-
mission of Ks/(M · Kch) blocks of data. In this paper, Kch > 1
is assumed as opposed to [1], where Kch = 1. Assuming symbol-
synchronous sampling at the receiver and ideal timing, the vector of
received symbols r ∈ C

N×1 can be written as

r = Hs + v ,

where s ∈ C
M×1 denotes the vector of transmitted symbols with

E[|si|
2] = 1/M , for 1 ≤ i ≤ M , and v ∈ C

N×1 is the vector
of independent complex Gaussian noise samples vi ∼ CN (0, σ2),
for 1 ≤ i ≤ M . The channel matrix H ∈ C

N×M , assumed
to be perfectly known at the receiver, has independent elements
hj,i ∼ CN (0, 1), for 1 ≤ j ≤ N and 1 ≤ i ≤ M , represent-
ing the block-Rayleigh fading propagation environment. The set of
all possible transmitted vectors form the M -dimensional complex
transmit constellation OM .

At the receiver, the turbo-principle is applied, where extrinsic
log-likelihood ratio (LLR) soft-information is exchanged iteratively
between the soft-MIMO detector and the outer decoder with inter-
leaving/deinterleaving operations in between until the desired per-
formance is achieved [1]. Concentrating on the soft-MIMO detec-
tor, its task is to generate extrinsic LLR information about the inter-
leaved bits b, LE(bk|r), for 1 ≤ k ≤ Kb, taking into account the
channel observations r and the a priori LLR information, LA(bk),
coming from the outer decoder. Given that the exact computation of
LE(bk|r) has an exponential complexity O(P M ) [1], a number of
soft-MIMO detectors have been proposed to approximate LE(bk|r)
with reduced complexity [1]-[6],[10],[11]. For the system under
consideration, assuming that the bits bk are statistically independent
due to the interleaving operation and making use of the Max-log ap-
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proximation LE(bk|r) can be approximated by [1]

LE(bk|r) ≈
1

2
max

b∈L∩Bk,+1

{
−‖r − Hs‖2

σ2/2
+ b

T
[k]LA[k]

}

−
1

2
max

b∈L∩Bk,−1

{
−‖r − Hs‖2

σ2/2
+ b

T
[k]LA[k]

}
, (1)

for 1 ≤ k ≤ Kb, where, without loss of generality, Kb =
M · log2 P has been assumed to simplify the index notation.
In (1), b[k] denotes the subvector of b omitting bk, LA =

[LA(b1), LA(b2), . . . , LA(bKb)]T, LA[k] denotes the subvector of
LA omitting LA(bk), Bk,+1 and Bk,−1 represent the sets of 2Kb−1

bit vectors b having bk = +1 (logical ‘1’) and bk = −1 (logical
‘0’), respectively, L ∩ Bk,+1 and L ∩ Bk,−1 denote the subgroups
of vectors of L that have bk = +1 and bk = −1, respectively,
and s = map(b)1, which represents the mapping of each group of
log2 P bits onto a QAM symbol. The subgroup of vectors or list of
candidates L ⊂ OM depends on the specific soft-MIMO detector
used and plays a key role in the performance and complexity of the
turbo-MIMO receiver, given that ‖r − Hs‖2 needs to be computed
for all s ∈ L.

3. SOFT-FSD

The SFSD presented in this paper is based on the FSD previously
proposed for uncoded MIMO detection [7]. The FSD approximates
the performance of the MLD combining a specific FSD channel ma-
trix ordering with a search over a subset of the entire transmit con-
stellation S ⊂ OM . The process can be written as

ŝFSD = arg min
s∈S

‖r − Hs‖2 .

The FSD, analogously to the sphere decoder (SD), can be seen as
a constrained tree search through a tree with M levels where P
branches originate from each node [12]. The FSD performs a fixed
two-stage constrained tree search, from i = M to i = 1, de-
pending on a parameter T . Initially, a full search is performed in
the first T levels expanding all P branches per node. Secondly,
a single search is performed in the remaining M − T levels, ex-
panding only one branch per node following the decision-feedback
equalization (DFE) path. The M columns of H are ordered iter-
atively so that the signals with the largest and the smallest post-
processing noise amplification are detected in the first T and the last
M − T levels, respectively [7]. In particular, for N ≥ M , the
FSD provides asymptotical maximum likelihood (ML) performance
if (N−M)(T +1)+(T +1)2 > N and provides the same diversity
as the MLD if (N − M)(T + 1) + (T + 1)2 = N [13].

It should be noted that the subset S could be directly used as the
list of candidates in (1). However, the FSD focuses only on finding
the best possible solution from a hard-output perspective. In the case
of turbo-MIMO systems, the interest is not only in finding the ML
solution, ŝML, but also in obtaining a set of candidates around the
ML solution with different bit values that can be used to calculate
the extrinsic LLR information of b. The SFSD approximates that set
of candidates around the ML solution with fixed complexity, taking
as a starting point the subset S of the FSD.

By its definition, S contains vectors where the bits correspond-
ing to the signals detected in the first T levels take both possible
values. However, that is not guaranteed for the bits corresponding to

1For simplicity, s is used to denote both the transmitted vector and a pos-
sible transmitted vector

the signals detected in the last M − T levels. For that reason, the
SFSD creates a new subset S̃ ⊂ OM to make sure that information
about the two values of the bits corresponding to the signals detected
in the last M − T levels is present. The list of candidates provided
by the SFSD is then generated as L = S ∪ S̃ where S ∩ S̃ = ∅
so that the transmitted vectors s ∈ S are not reconsidered in S̃. In
addition, S̃ is created so that it favors the transmitted vectors with
the required bit values that are more likely to be closer to the FSD
solution, in order to obtain an accurate approximation of LE(bk|r)
in (1).

3.1. Soft-FSD Algorithm

The SFSD iteratively generates a subset S̃ so that different levels of
performance and complexity can be achieved at the receiver. As the
number of iterations 1 ≤ NSFSD ≤ |S| increase, the accuracy of
(1) improves at the expense of a higher complexity. Let {s(l)}, for
1 ≤ l ≤ |S|, denote the elements of S such that ‖r − Hs

(1)‖2 ≤

‖r − Hs
(2)‖2 ≤ . . . ≤ ‖r − Hs

(|S|)‖2 and s
(1) = ŝFSD.

If only one iteration is performed, the SFSD selects the path in
the tree that corresponds to s

(1) = [s
(1)
1 , s

(1)
2 , . . . , s

(1)
M ]T, initializes

S̃ = ∅ and performs the following steps for i = M − T, . . . , 1:

1. Additional log2 P branches are considered at level i, corre-
sponding to the constellation points ŝ

(1)
i,p , for 1 ≤ p ≤ log2 P ,

defined as

ŝ
(1)
i,p = arg min

s
(1)
i,p

∈Op

|s(1)
i,p − s

(1)
i |2 , (2)

where Op ⊂ O denotes the subset of the constellation points
whose p-th bit is the negated of the p-th bit of s

(1)
i . This can

be seen as a local bit-negating operation [6].

2. If i > 1, those additional branches are extended, following
the DFE path, until the bottom of the tree is reached. The
corresponding log2 P transmitted vectors are then added to
S̃, i ← i − 1 and the algorithm continues from step 1. If
i = 1, no path extension is required. The log2 P transmitted
vectors are directly added to S̃ and the algorithm terminates
with L = S ∪ S̃.

Thus, after one iteration, S̃ contains information about the bit
values that are not represented in s

(1), although it does not necessar-
ily contain the vectors s ∈ OM with bit values not represented in
s
(1) and lowest Euclidean metric. In addition, the dependencies be-

tween the last M − T levels are accounted for only in the DFE path
extension of step 2 and not in the bit-negating operation of step 1,
which is performed independently per level. However, the following
justifies the use of S̃ as a low-complexity alternative:

• By selecting s
(1) as the starting point, transmitted vectors that

are relatively close to s
(1) are obtained in S̃, where s

(1) =
ŝML with high probability [13].

• The columns of H selected in the last M − T levels by the
FSD ordering are more orthogonal between them compared
to the columns obtained if no ordering or a vertical-Bell Labs
layered space time (V-BLAST) ordering is applied [14]. This
effectively reduces the dependencies between those M − T
levels.

Fig. 1 shows a tree diagram of the resulting list of candidates
L if one iteration is performed in the SFSD in a 4 × 4 system with
4-QAM modulation, assuming Gray mapping, and T = 1 [7]. Al-
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Fig. 1. List of candidates L generated by one iteration of the SFSD
in a 4 × 4 system with 4-QAM modulation.

though, in the 4-QAM case, the bit-negating operation corresponds
to negating each bit independently, that is not always the case for
higher modulations. However, that does not represent an increase in
complexity, since the constellation points ŝ

(1)
i,p in (2) can be obtained

using a look-up table (LUT) of P × log2 P entries.
The performance of the SFSD can be improved by performing

additional iterations according to NSFSD, keeping S̃ from the pre-
vious iteration and taking as a starting point s

(2), s(3), . . . , s(|S|) in
each additional iteration, respectively. That performance improve-
ment comes at the expense of only a linear complexity increase
with NSFSD. The total number of candidates in L is given then by
|L| = P T +NSFSD ·log2 P ·(M−T ), where no clipping is required
since all the bit values are represented in L [1]. The SFSD, like the
FSD, has a fixed complexity independent of the noise level and the
channel conditions. In addition, all the NSFSD iterations can be per-
formed in parallel, i.e. there are no dependencies between them.
Thus, the SFSD is especially suited for a fully-pipelined real-time
hardware implementation.

4. SIMULATION RESULTS

The bit error rate (BER) and complexity of the SFSD have been mea-
sured through Monte Carlo simulations, comparing them to those of
the LSD, in a 4 × 4 system using 4-,16- and 64-QAM modulation.
Frames of Kb = 9216 bits with Kch = 16 have been transmitted
using the rate Rc = 1/2 parallel concatenated turbo code of memory
2 used in [1] and pseudo-random interleavers. The SFSD, denoted as
SFSD-NSFSD, takes as a starting point the corresponding FSD with
T = 1 and performs a variable number of iterations NSFSD depend-
ing on the modulation used (NSFSD = {1, 2}, {1, 2, 3, 4}, {2, 4, 6}
for 4-,16-,64-QAM, respectively). The LSD, denoted as LSD-P ,
generates a list of P candidates with the lowest Euclidean metric,
setting its radius to that of the candidate with the largest Euclidean
metric when the list is full. For simplicity, if the LSD obtains no
information about one of the possible bit values, its extrinsic LLR
value is clipped to ±8 [1]. At the receiver, 4 iterations are con-
sidered, where one receiver iteration is defined as a complete cycle
of extrinsic information exchange between the soft-MIMO detector
and the turbo decoder with the turbo decoder performing 8 internal
iterations. Finally, the soft-MIMO detectors are run only once at the
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Fig. 2. BER performance of the SFSD and the LSD with a rate
Rc = 1/2 turbo code in a 4× 4 system as a function of the SNR per
bit.

beginning of the detection process. Although the performance of the
detectors could be improved by incorporating a priori information
and rerunning them in every iteration, that would cause an increase
in complexity proportional to the number of iterations and it has not
been considered in this paper.

Fig. 2 shows the BER performance of the SFSD and the LSD
as a function of the signal to noise ratio (SNR) per bit, Eb/N0 =
log−1

2 P / σ2. It can be seen how the SFSD approximates the perfor-
mance of the LSD independently of the modulation used, although
more SFSD iterations are required for higher modulations. In partic-
ular, in the 16-QAM case, performing NSFSD = 4 iterations yields
effectively the same performance as the LSD-16. On the other hand,
if only NSFSD = 1 iteration is performed in the SFSD, the |L| = 28
candidates obtained can only approximate the soft-information of
the 16 candidates obtained by the LSD-16. Although L has the ad-
vantage of containing information about all the possible bit values,
its elements are not guaranteed to have the lowest Euclidean dis-
tance per bit value, making it more difficult for the turbo-scheme to
converge. In addition, although not included in this paper for brevity,
further simulations show that the performance degradation decreases
as the number of receiver iterations decreases.

The complexity of the SFSD and the LSD with 16-QAM mod-
ulation are shown in Fig. 3. In order to account for the computa-
tional complexity of the soft-detection algorithms, the curves include
only real arithmetic operations (addition/subtraction and multiplica-
tion/division). For simplicity, all the operations have been consid-
ered to have the same effect on the final operations count. An op-
timized version of the LSD has been considered, using the direct
Schnorr-Euchner (SE) enumeration proposed in [15]. In addition, a
V-BLAST-zero forcing (ZF) channel matrix ordering has been con-
sidered to further reduce the complexity of the LSD [16]. The 90-
percentile is plotted to indicate the number of operations required to
generate the list of candidates in 90% of the cases, given the vari-
able complexity of the LSD. For the number of SFSD iterations
under study, the complexity of the SFSD is smaller than that of the
LSD-16 with V-BLAST-ZF ordering, especially for the region of
operation of turbo-MIMO systems, Eb/N0 < 15 dB. Apart from
the lower complexity, a very important advantage of the SFSD is
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its fixed complexity, that allows a fully-pipelined hardware imple-
mentation of the algorithm. The sequential nature of the LSD and
its variable complexity can affect a mapping of the algorithm on a
hardware platform. For comparison purposes, the complexity of the
K-Best lattice decoder [11] with K = 16 is shown, given that it also
has a fixed-complexity and yields a slightly better performance than
the SFSD-2 if 4 iterations are run at the receiver (but worse than the
SFSD-3). It can be seen how the complexity of the K-Best lattice
decoder is considerably higher than that of the SFSD. Although dif-
ferent alternatives have been proposed to reduce it [11], they result
in a variable complexity which affects its real-time implementation.

One important aspect of Fig. 3 is the fact that only arithmetic
operations have been considered, thus hiding the additional logical
operations required in the LSD due to the sequential tree search and
the additional sorting operations required in both the LSD and the
K-Best lattice decoder. On the other hand, in all cases |L| > P , i.e.
the SFSD generates more candidates than the LSD-P it is compared
with. That has the side-effect of linearly increasing the number of
additions required to evaluate LE(bk|r) in (1) compared to the LSD-
P . However, that effect can be reduced by limiting the maximum
number of candidates given by the SFSD without greatly affecting
the performance. In this case sorting operations would be required to
select the candidates with the lowest Euclidean metric and clipping
values would need to be used if information about all bit values is
not present.

5. CONCLUSION AND FUTURE WORK

In this paper, a soft-extension to a previously presented FSD has
been proposed for iterative detection and decoding in turbo-MIMO
systems. The SFSD uses the same channel matrix ordering and gen-
erates a list of candidates, relatively close to the hard-output FSD
solution, that contains soft-information about all the possible bit val-
ues. It has been shown how the SFSD can approximate the perfor-
mance of the LSD while having a lower and fixed complexity. In
addition, the iterative nature of the SFSD allows for different lev-
els of performance/complexity trade-off to be achieved. The SFSD,
given its fixed complexity, is especially suited for a parallel and

fully-pipelined real-time implementation.
In terms of current and future work, additional methods could be

devised to improve the performance of the SFSD when a low number
of iterations NSFSD is performed, without resorting to a consider-
ably higher nor variable complexity. In addition, a detailed compar-
ison would need to be done between the SFSD, previously proposed
alternatives to the LSD [4], [6] and soft-MIMO algorithms based on
the sequential decoder [9].
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