
AN INTEGRATED ENVIRONMENT FOR DEVELOPING REAL-TIME DSP APPLICATIONS

Jacob Fainguelernt Graham Reith Richard Sikora
Tel-Aviv University The MathWorks Ltd. JLR Engineering Centre

Tel-Aviv, Israel
jfaing@eng.tau.ac.il

Cambridge, UK
Graham.Reith@mathworks.co.uk

Coventry, UK
richard_sikora@hotmail.com

ABSTRACT

This paper describes an innovative environment to develop
real-time embedded Signal Processing based applications,
and a suite of example applications that have been
developed to assist in academic teaching of practical signal
processing. The objective of this environment is algorithmic
design and simulation, which itself is educational but it can
also be used as a rapid prototyping tool, enabling students to
experiment with real-time DSP applications in a variety of
fields. The environment offers a wide range of libraries to
support this, and it has an open hardware and software
architecture enabling further expansion of its functionality.

Index Terms— Signal processing, Engineering
education, Educational technology, Real-time systems,
Programming environments

1. INTRODUCTION AND MOTIVATION

Significant work has been done within the field of DSP
education, trying to bridge the gap between mathematical
theory and real-time implementation. Educational labs and
courses have been developed in the past, some of which are
based on DSP programming [1][2] whilst others rely solely
on the MATLAB environment. In this case MATLAB and
Simulink are used, together with Real-time Workshop [3]
code generation technology, allowing high-level algorithms
to be developed and understood in simulation whilst also
allowing C code to be developed and run on a COTS DSP
board [4][5]. Recently code generation tools were
introduced in other DSP courses [6],[7] making use of the
Target for TI C2000TM [8] and the Target for TI C6000TM
[9]. The above references however, address only the DSP
student audience, as they only demonstrate algorithm
implementation.

We present here a tool that can be used not only for
education, but also as a prototyping tool for a wide range of
DSP based applications. The tool can be used not only DSP
specialists, but also by academic people wishing to
implement an application on real-time hardware having a
limited knowledge of DSP programming techniques.

2. OBJECTIVES

The main objective of this project was to create a suite of
example applications that can be easily used by academic
people belonging to either of the following groups:

 Top-bottom designers: Academics developing
algorithms, systems and applications by first modeling
and simulating in high-level languages like MATLAB
M-code or Simulink block diagrams who want to
prototype and deploy their ideas on TI DSPs, and who
want to validate the design and its real-time
characteristics on hardware.

 Bottom-Top designers: Practitioners very familiar with
TI DSP hardware programming tools who want to tap
into modeling and simulation capabilities of MATLAB
and Simulink and bring their application to higher levels
of abstraction, either in M-code or Simulink models to
study design tradeoffs and test their algorithms in a
system-level environment.

Students should be able to learn from the examples, and

then create their own applications using the building blocks
provided by the tool. They could then extend the system
capability further by developing their own blocks in M or C
and integrating them with the system model.

In order to cover this target audience, the following
requirements were applied:

 Intuitive User Interface – Students should be able to
have a quick and easy interaction with the environment
both in the development phase and when interacting with
the implemented design.

 Open Architecture – Well-defined hardware and
software interfaces should allow external modules
(hardware and software), to be easily integrated within
the environment as new building blocks.

 Smooth Migration from Simulation to Real-Time –
The simulation environment should reflect real-world
environmental effects with maximum accuracy.

 Target Platform Portability – Algorithms should be
easily ported from one COTS DSP board to another, as
far as system interfaces and device performances allow.

26531-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Hardware

Software

C6000 DSP

Compile
& Link

Texas Instruments
Code Composer Studio™
Environment

Debug

Simulink®

DSP Hardware

C2000 DSP

C/ASM Code

Generated
Code

Real-Time Workshop
Embedded Targets

MATHWORKS Environment

Download

User
Code

Libraries

MATLAB®

External Software
Development Environment

C Files

External Hardware

Figure 1 - The Development Environment

4. THE ENVIRONMENT

The development process for a typical DSP application
comprises three stages. It starts with a top level design,
where algorithms are designed and simulated. From this top-
level, C code is generated which is passed to the compiler
environment, together with required device drivers and a
scheduler. This project is then compiled and downloaded to
the DSP, from where debug links can return verification data
back to the top-level environment.

Figure 1 shows the building blocks of the development
environment. It is based on Simulink for the top-level design
and C code generation using the Real-Time Workshop,
Real-Time Workshop Embedded Coder, Link for Code
Composer Studio, Target for TI C6000 and/or Target for
TI C2000 tools. The environment supports a range of the TI
DSP development boards. The ones used by the examples
are outlined in Table 1.

Table 1- Hardware Platforms

Board Application Field
eZDSPF2808 [10] Control
eZDSP-F2812 [11] Control
DSK6713 [12] Audio and Communication
DSK6416 [13] Imaging
DM6437 DVDP [14] Video

The functionality of the basic configuration above can

be expanded with additional block libraries for particular
applications. For algorithm design purposes, MATLAB M-
code and also C code can be used to create new Simulink

blocks. The user can also integrate the code that is generated
with code developed by himself and/or software libraries in
the CCS environment. Standard analog and digital interfaces
allow the DSP board to be connected to standard
input/output devices (microphones, speakers, video cameras,
motor drivers, etc …), external devices, and is extensible to
allow inclusion of dedicated boards designed by the user.

5. METHODOLOGY

The use of the system is a four steps process as follows:

1. Create a Simulation Model in Simulink, using virtual
sinks and sources (Simulink blocks).

2. Run the simulation on a PC and tune its parameters.
3. Replace simulation sources and sinks with real

hardware interfaces. Generate the DSP code.
4. Run the system in real-time.

This process is illustrated by the example shown in
Figure 2. In this example, the environment is used to build a
physical model of vehicle engine management in simulation,
which is then used to create an implementation on the
eZDSP-F2812. This board will emulate in real-time the
behavior of a vehicle, under various stimuli. The model
contains two blocks representing the engine management
and the vehicle dynamics (based on equations of motion).
To simulate the gas pedal of a car being smoothly depressed,
in the simulation, a ramp stimulus with saturation is applied
and the vehicle behavior is verified using various process
blocks placed along the model.

2654

a

b

Figure 2 Vehicle Engine Management: Simulation Model (a) and Implementation Model (b)

In the second phase, the ramp stimulus is replaced by
the Analog to Digital Converter Block of the
TMS320F2812 and the speed display is replaced by a
PWM generator block. This enables the use of a signal
generator to stimulate the physical model and analyze the
behavior with an oscilloscope connected to the PWM
output.

6. ADVANCED FUNCTIONALITY

The Car model described in the previous section
exemplifies the basic use of the system. In the current
section we describe (in brief) some other applications,
which exemplify the use of a variety of system features for
various fields of application.

These represent a small selection of the examples that
have been developed as workshop and lecture material for
educational establishments.

DC Motor Control: The goal of this example is to
implement a real-time DC motor speed control system on
the eZDSP-F2812.

The first step is to identify the DC motor transfer
function. The DC motor was activated in open loop, its
step response was analyzed using MATLAB tools, and the
transfer function was estimated.

The DC motor control loop was then designed around
this using a PID controller. The simulation model made
use of a PID block is based on a library function
optimized for the TMS320F2812. This block was used
both for simulation and for real-time, allowing an accurate
fixed-point simulation of the application and also optimal
on-target performance.

An analog interface card was designed for this
example based on the simulation results, and the electrical
specifications of the eZDSP-F2812 and the DC motor.

Audio Conference Bridge: The Audio Conference

Bridge example demonstrates the control of a voice call
with multiple (n >2) attendants. The algorithm monitors
the voice signals from all attendants, and switches the
signals to be transmitted back to the attendants, according
to a controlling algorithm,

This application cannot be implemented using solely
the DSK6713, as it has only 2 analog ports. Therefore two
daughterboards, the TLV320AIC24/24KEVM [15] and
the DSP-CODEC development platform [16], are used.

Drivers for those boards are not available as part of
the Target for TI C6000TM, so a new Simulink driver
block was created based on a legacy driver (developed in
the Code Composer Studio (CCS) environment).

Lane Detection: This example illustrates an

application for detecting the lane markings on a road as
seen from a vehicle. This would form the basis of
automotive driver assistance systems, eg Lane Departure
Warning. The algorithm is based on detecting the two
longest lines in the image and displaying a polygon based
on those lines to indicate the current lane. First the region
of interest (ROI) is determined, and this is processed by
an edge detection algorithm. The two longest lines are
then located using the Hough transform. The outputs of
this are validated to improve the lane tracking
performance, ignoring large variations in the Hough

2655

transform output values. The final block constructs the
lane polygon superposed over the original image.

The lane detection model uses mainly standard
Simulink blocks. An exception to this is the lane tracking
performance improvement block, which is a logical
function and can be more easily described and
implemented by some MATLAB M-code.

Other Examples: Besides the applications above, a
number of other applications have been developed as
listed below:

 Acoustic Noise Cancellation
 Audio Echo & Reverberation
 Wavelet Denoising
 SNR Measurements
 DTMF
 Spectrum Estimation

Audio and
Communication:

 Analog Modulation
 Edge Detection
 Line and Lane Detection

Imaging:

 Video Surveillance
 DC Motor Control Control:
 PMSM Control

7. CONCLUSIONS

This paper presented a tool for the implementation of real-
time DSP applications, and introduced a suite of example
applications developed at the School of Electrical
Engineering of the Tel-Aviv University, and are now
available as workshops and lectures for academic use
[17].

The use of the Simulink code generation tools and
COTS DSP boards allows a seamless prototyping and
implementation process. The tool capabilities, and scope
of the examples, can be further enhanced due to its open
software and hardware architecture.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the support from
the Texas Instruments University program through Cathy
Wicks and Robert Owen. They would like also thank The
MathWorks Inc., especially to Amnon Gai, Houman
Zarrinkoub, Maureen Maher and Ken Karnofsky for their
support.

The authors are thankful to Ilan Fono (Tel-Aviv
University - School of Mechanical Engineering), for the
development of the DC motor control model, and to Elad
Sity and Ori Altman (Tel-Aviv University - School of
Electrical Engineering), for the development of the Audio
Conference Bridge model.

11. REFERENCES

[1] W. S. Gan , "Teaching and Learning the Hows and Whys of
Real-Time Digital Signal Processing", IEEE Transactions on
Education, Vol. 45, no. 4, pp. 336-344, November 2002.

[2] Jacob Fainguelernt and Arie Yeredor, “Bridging the gap
between DSP theory and real-time implementation,”
Proceedings of the European DSP Education and Research
Symposium (EDERS2004), Birmingham, UK , 2004

[3] The MathWorks Inc., "Real-Time Workshop® User's Guide",
Version 7.0, September 2007

[4] K. H. Hong and W. S. Gan, “Efficient block diagram
synthesis of DSP kernels for the TMS320C6701,” presented at
the 2000 Int. Conf. Signal Process. Appl. Technol., Dallas, TX,
October 2000.

[5] W. S. Gan, , Y. K. Chong, W Gong, and W. T. Tan, "
Rapid Prototyping System for Teaching Real-Time Digital
Signal Processing", IEEE Transactions on Education, Vol. 43,
no. 1, pp. 19-24, February 2000.

[6] W. S. Gan and S. M. Kuo, "Transition from SIMULINK to
MATLAB in Real-Time Digital Signal Processing Education",
International Journal of Engineering Education, Vol. 21; No 4,
pp. 587-595, 2005.

[7] S. Gannot and V. Avrin, "A SIMULINK and Texas
Instruments C6713 based Digital Signal Processing Laboratory",
Proceedings of the 2006 European Signal Processing
Conference (EUSIPCO), Florence, Italy, September 2006.

[8] The MathWorks Inc., "Target for the TI C2000TM User's
Guide", Version 2.3, September 2007.

[9] The MathWorks Inc., " Target for the TI C6000TM User's
Guide", Version 3.3, September 2007.

[10] Spectrum Digital Incorporated, "eZdspF2808 Technical
Reference", Rev. C, October 2005.

[11] Spectrum Digital Incorporated, "eZdspF2812 Technical
Reference", Rev. F, September 2003.

[12] Spectrum Digital Incorporated, "DSK6713 Technical
Reference", Rev. B, November 2003

[13] Spectrum Digital Incorporated, "DSK6416T Technical
Reference", Rev. A, November 2004

[14] Texas Instruments: DM6437 Digital Video Development
Platform,

[15] Texas Instruments, "TLV320AIC20K/24KEVM User's
Guide", SLAU088A, April 2005.

[16] Texas Instruments, "DSP−CODEC Development Platform
User's Guide", SLAU090, September 2002

[17] J. Fainguelernt, G. Reith and R. Sikora, " From MatLab to
Real-Time with TI DSP", Texas Instruments & The MathWorks
Inc document DSP14105U, To be Released December 2007.
Available from www.ti.com/university & www.mathworks.com

2656

