
A Philosophy and Software Tool For Teaching and
Learning Signal Processing and Communication

Systems
Jake Gunther

Dept. Elec. & Comp. Eng.
Utah State University
Logan, Utah 84322-4120

jake.gunther@usu.edu

Brandon Eames
Dept. Elec. & Comp. Eng.
Utah State University
Logan, Utah 84322-4120

beames@engineering.usu.edu

Darin Nelson
Dept. Elec. & Comp. Eng.
Utah State University
Logan, Utah 84322-4120
dsnelson@cc.usu.edu

Abstract—Graphical modeling software tools have become
commonplace in educational laboratories associated with courses
in signal processing and communication systems. This paper
explains that the purely graphical approach to modeling and
simulation can be improved upon by combining graphical mod-
eling with some low-level programming tasks. To implement this
philosophy, a new software tool called EduCOM was developed.
EduCOM offers a graphical modeling environment to construct
system models. It also translates a graphical model into C/C++
code that can be compiled into an executable to simulate the
model. Students are required to program the functionality of im-
portant blocks in their models such as lters, minimum-distance
hard-decision rules, and look-up-tables. Anecdotal evidence is
provided indicating that this approach offers an improved learn-
ing experience over pure graphical modeling approaches.
Index Terms—Signal processing education, engineering educa-

tion, simulation software

I. INTRODUCTION

Over the last ten to fteen years, we have witnessed
increasing use of software tools and computer modeling and
simulation in electrical engineering education. Two of the
disciplines most affected by this trend are signal processing
and communication systems. Most classes in these areas in-
volve computers in some way. Assignments range from simple
programming assignments in a high-level language that run on
a personal computer to complex projects that run in real-time
on DSP hardware.
Besides preparing students for real engineering in the

workplace, computer assignments serve practical pedagogical
purposes. Programming assignments create a new paradigm
in which the student plays the role of the teacher with the
computer as student. Students must write a speci c set of
instructions for the computer to follow. If the student can teach
the computer to perform a task, then the student must have
mastered the concept as well. Otherwise, he could not teach
it correctly.
To aid working engineers, many software vendors have de-

veloped graphical tools for modeling, simulating and analyzing
signal processing systems. Examples include Simulink [1, 2],
LabVIEW [3,4], SystemVue [5,6] and JDSP [7,8]. These tools

are promoted by promising to enhance the performance of
engineers. At a high level, they work like this. An engineer
builds a graphical model of a signal processing system by
dragging blocks from a prede ned library into a modeling
area on the screen using a mouse. The blocks implement
speci c functions such as ltering, up sampling, down sam-
pling, addition, multiplication, etc. The blocks are connected
by drawing wires between the blocks. In appearance, the
software-based graphical model resembles quite closely the
block diagrams that engineers typically use to describe sys-
tems. After con guring the individual blocks and specifying
some global parameters, the engineer starts a simulation by
pressing a button on the graphical modeling tool. This is billed
as a performance enhancement because the engineer did not
have to write a single line of code. Graphical models can be
assembled and simulated quickly and easily.
Besides gaining acceptance in industry, graphical modeling

tools have encroached on academic turf in the research labo-
ratory, the classroom, and the instructional laboratory. Today
graphical modeling tools are commonplace in classes on signal
processing and communication systems. In some instances,
and the number seems to be growing, modeling and simulation
using graphical tools has supplanted more traditional means
of simulating, i.e. writing computer programs in low-level
programming languages such as C/C++.
In an educational setting, graphical modeling offers the

same performance enhancements that it offers to practicing
engineers. Students can assemble and simulate complicated
signal processing systems quickly. They can vary system
parameters and change input signals easily and visualize
the corresponding responses. Thus, graphical modeling offers
students the chance for experimentation that was not formerly
available.
Besides the advantages of experimentation, graphical mod-

eling is a natural extension of the theory developed in the
classroom. In the eld of communication systems, for ex-
ample, teachers often pose a problem to students in the
classroom. Then, using the fundamental principles students
learned previously, teachers lead them through the steps of a

26371-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

process to nd, say, the optimal receiver for a given transmitted
waveform and channel. In the end, all the mathematics of
the receiver processing is converted into a block diagram
representation. This is as far as the classroom discussion can
go. Therefore, it seems natural to use the block diagram as
the starting point for a laboratory exercise, and graphical
modeling provides a means to construct a model for the
receiver and to simulate it. These simulations serve to verify
the performance characterization developed in class through
mathematical analysis.
Having enumerated the strengths of using graphical model-

ing in educational settings, we believe that a purely graphical
approach to modeling and simulation separates students from
some of the low-level details that are an important component
for education. In the past students did all their modeling and
simulation using a programming language like C. This exercise
forced them to think deeply about the low-level details of
the system. In contrast to graphical modeling, programming
is a slow, tedious, error prone, and often frustrating process.
Nevertheless, it offers a process for learning about the details
and function of system components that is lost when graphical
modeling replaces computer programming.
In our view, the ideal modeling and simulation tool would

combine the best features of graphical modeling and low-level
programming. The ideal tool would use graphical modeling to
construct models of signal processing systems because this
can be done quickly and graphical models agree with block
diagram representations developed in the classroom. The ideal
tool would also require students to write code in a language
like C to implement the functionality of the blocks in the sys-
tem model. To test this philosophy, we developed a tool called
EduCOM for education in communication systems. EduCOM
is the ideal tool described above. This paper describes this
tool and how it may be used in an undergraduate course on
communication systems.

II. THE EDUCOM TOOL

The EduCOM modeling and simulation tool was developed
using the Generic Modeling Environment. This section rst ex-
plains the Generic Modeling Environment and then describes
the EduCOM tool.

A. Generic Modeling Environment

The Generic Modeling Environment (GME) [9–11] is a
toolkit for doing three things:
1) creating graphical modeling languages for speci c do-
mains,

2) using graphical modeling languages to compose models,
and

3) translating a graphical model into a form suitable for
simulation.

Block diagrams are ubiquitous in the areas of signal pro-
cessing and communication systems. Such diagrams represent
signal ow from inputs to outputs. The blocks in the system
identify the processing performed on intermediate signals.

For example, Fig. 1 shows a block diagram for a QPSK
transmitter/receiver system.

bits s/p lut

↑ N

↑ N

r

r

cos(Ω0n)

sin(Ω0n)
noise

D lut p/s bits
↓ N

↓ N

mf

mf

cos(Ω0n)

sin(Ω0n)

Fig. 1. Block diagram of the QPSK system implemented and simulated using
EduCOM in a laboratory exercise. Students were required to implement the
core functionality of the shaded blocks in C, while implementations for the
remaining blocks were provided by the teacher. In the diagram: “lut” stands
for look-up-table, “s/p” and “p/s” are serial-to-parallel and parallel-to-serial
operations, “D” is a hard decision block, “ r” is a nite impulse response
lter, and “mf” is a matched lter.

Signal processing block diagrams have a language in and
of themselves. They have syntax, semantics, and present
information. By following the rules of the language, an author
(the creator of the diagram) can communicate information to
readers (those who examine the diagram).
GME is a toolkit for creating graphical modeling languages.

Recently, the authors used GME to create a graphical language
to describe signal processing block diagrams. GME can en-
force the constraints and rules governing the construction of
block diagram models. For example, the output from one block
may be connected to the input of another block and the sample
rates should match. It does not make sense to connect two
inputs together or two outputs together. All of the information
relating to a speci c graphical modeling language constitutes
a modeling paradigm and is stored in a paradigm le.
GME provides a graphical editor for model construction. To

use a particular modeling language, the paradigm le for that
language is loaded into GME. Then the modeler may construct
models using the language. Models are created using a mouse
to drive a graphical model construction process in a model
editing window.
While GME can be used to create graphical models ac-

cording to a speci c modeling paradigm, it natively offers no
support for analyzing or extracting the information captured
in the models. Rather, it offers an intuitive interface whereon
tool developers can build translation tools, called model in-
terpreters. For example, a model interpreter might translate a
graphical model into C code. The C code could be compiled
to build an executable le, which can be executed, perhaps, to
simulate the system. The interpreter is usually written by the

2638

same people who created the modeling paradigm.
In summary, GME can be used by tool developers to create

new graphical modeling languages and model interpreters.
System developers can then employ GME as a model devel-
opment platform supporting the created modeling language.
System modelers construct graphical models of a system, and
then invoke the corresponding model interpreter to perform
meaningful translations on the models, such as code genera-
tion.

B. EduCOM
The EduCOM language was created as a GME modeling

paradigm designed speci cally for students learning about
communication systems. It implements the essential features
needed for constructing rather general signal processing sys-
tems. A screen shot of the GME/EduCOM modeling window
is shown in Fig. 2.
EduCOM consists of three kinds of blocks: source blocks,

sink blocks, and processing blocks. Source blocks are the
inputs to a signal processing system. The source blocks cur-
rently implemented in EduCOM are: input from le, constant,
sinusoid, random integer, and random Gaussian noise. Sink
blocks are destinations for signals. The sink blocks currently
implemented in EduCOM are: output to le, eye pattern, and
scatter plot. Because EduCOM was designed for simulating
communication systems and because eye patterns and scatter
plots are useful diagnostic tools, these sink blocks were
provided. However, it would be easy to add other blocks for
visualization in time or frequency domains.
Processing blocks perform transformations on their in-

put signals. The processing blocks currently implemented in
EduCOM are: sum block, product block, gain block (scale the
input by a constant), lter, look-up-table, hard decision, serial-
to-parallel, parallel-to-serial, up sample, and down sample.
Obviously, some of these blocks are geared speci cally for
communication systems. However, many of these blocks, such
as lter, up sample, and down sample, are useful in general
for (multirate) signal processing systems.
Besides blocks, EduCOM has two other language elements:

ports and connections. Ports come in basically two types:
inputs and outputs. There are inverting and non-inverting input
ports. Inverting ports can be used to change a sum block
to a difference block, for example. In addition, there are
also named ports that associate particular input signals with
variables in the C code generated by the model interpreter.
Connections are represented in EduCOM by a line between

an input port and an output port. Connections are drawn using
a simple, intuitive point-and-click process. GME takes care
of intelligently routing lines for connections around blocks so
that the graphical models stay uncluttered and easy to read.
The EduCOM interpreter is a C program that translates

graphical models into C/C++ code and is invoked by pressing a
button on the GME modeling window. The interpreter iterates
through the model and instantiates one C++ block object for
each block in the model and one C++ connection object for
each connection. A reference to the connection object is passed

B
C

A

Fig. 2. Screen shot of the GME/EduCOM graphical user interface. A partially
built model is shown in the main modeling area (A). The block pallette (B)
appears below and to the left of the main modeling area. The pane below and
to the right of the main modeling area shows block attributes (C). The solid
squares on each block are ports, and lines represent connections.

to the block that outputs to the connection and the block that
takes inputs from the connection.
Each block class in EduCOM inherits from a base class.

The key feature of the base class is a method called “ re”.
The re method is called to invoke the processing of the
block. For example, the re method in a lter block imple-
ments convolution, i.e. it takes an input, shifts it into a shift
register, multiplies the data in the shift register with the lter
coef cients, adds the products, and outputs the result. Each
block has a re method.
The last step for the EduCOM interpreter is to write the

simulation main loop. Through a process known as topological
enumeration [12], the interpreter analyzes the model and
determines the proper order to call the re methods for the
blocks in the system. It then places calls to the appropriate re
methods in a for loop. The duration of the simulation is easily
controlled by changing the termination condition for the for
loop. While EduCOM writes the simulation main loop, it does
not write code for the re methods. These are written either
by the student or by the teacher. The next section explains
this.

III. MODELING AND SIMULATION PROCESS USING
EDUCOM

The goal of this research was to test the hypothesis that a
combination of graphical modeling and low-level program-
ming provides a better learning experience than a purely
graphical approach. To test this idea, EduCOM was developed.
The main feature of EduCOM that is different from other
graphical modeling tools (Simulink, LabVIEW, SystemVue,
JDSP) and that makes testing our hypothesis possible is that
EduCOM does not provide code implementations for the
blocks, i.e. the re methods. Like other graphical modeling

2639

Student Computer Teacher

ideas graphical model (.mga)

simulation code (.cpp)

simulation app (.exe)

“ re”
implementation

.cpp

component
library

.cpp, .h

eyescatter
0.230.350.710.24

text le

GME
EduCOM EduCOM

Interpreter

compiler

visual feedback

Fig. 3. EduCOM communication system model development and simulation
process.

tools, EduCOM provides a library of blocks to choose from in
constructing models. Other graphical modeling tools, provide
implementations of blocks. EduCOM does not. The block
implementations are provided by either teacher or student,
and with out the block implementations the model will not
simulate. Therefore, EduCOM offers the teacher the exibility
to vary the student experience. The teacher could provide
re method code for every block. Then, EduCOM would be
no different from any other graphical modeling tool. At the
other extreme, the teacher could provide nothing and require
students to write the re methods for every block in the system.
We believe that some middle ground may be best because
there seems to be little to be gained, from an educational
standpoint, in requiring students to implement the re methods
for simple blocks such as sum, multiply, etc. Instead, it seems
more productive to require students to focus their attention on
what may be called the “high value” blocks in the system.
In the case of communication systems, the high value blocks
are the matched lter, the hard decision block, and the look-
up-table. These are operations that are discussed at length in
classroom lectures and investigated in homework exercises.

The model development and simulation process of EduCOM
is illustrated in Fig. 3. Students come into the computer lab
with ideas about a system model block diagram. Using GME
and the EduCOM language they build a graphical model.
The EduCOM interpreter translates the model into C/C++
code. Students provide re method implementations for the
high value blocks. Teachers provide re method implementa-
tions for the pedestrian blocks. Together the student’s code,
the teacher’s code and the simulation main loop provided
by EduCOM, students build an executable and run it. The
executable provides visual feedback in the form of eye pat-
terns, scatter plots, and text les so that students can debug
errors. When their systems are in working order, students
can experiment with variations in modulation type, pulse
shape and excess bandwidth, signal to noise ratio, carrier
frequency and phase offsets, and so on. This experimentation
provides valuable insights into the purpose and function of the
components in the system.

IV. OBSERVATIONS FROM A PILOT STUDY
EduCOM was used in a pilot study with students in an

undergraduate communication systems class. In this study, stu-
dents built the QPSK system shown in Fig. 1 in Simulink and
EduCOM. This group of students were also experienced with
the C/C++ programming languages and could therefore also
offer their opinions about the three approaches to modeling
and simulation: pure graphical approach using Simulink, pure
programming approach using C/C++, combination of graphical
modeling and programming using EduCOM.
In this experiment using EduCOM, we saw something new

that we had not previously encountered when using Simulink
in our teaching. The rst part of the lab exercise with EduCOM
was to construct a graphical model for the QPSK system. As
in our previous experience with Simulink, students quickly
constructed their models. The next step in a Simulink lab is to
press the “simulate” button. With EduCOM, the next step was
to invoke the interpreter and then write code implementations
of the re methods for the lter block, the hard decision block,
and the look-up-table block. (These high value blocks are
shaded in Fig. 1.) At this point, students backed away from
their computers and opened their notes and their textbooks
to review concepts. They thought hard about the ltering and
decision concepts. They got out paper and pencil and worked
things out by hand before returning to the computer to write
code. The requirement to program the re methods for these
blocks forced the students to think more deeply about what
these blocks were doing and to review concepts from class.
In Simulink, students utilized pre-built blocks from a block
library, but they did not actually know what the blocks were
doing. Therefore, with EduCOM, we were able to recover
an important process for learning that was lost when we
used Simulink. Further assessment of the EduCOM tool is
underway.

REFERENCES
[1] www.mathworks.com.
[2] S. T. Karris, Signals and Systems with Matlab Computing and Simulink

Modeling. Orchard Publications, 3e ed., 2007.
[3] www.ni.com/labview.
[4] M. A. Yoder and B. A. Black, “Teaching DSP First wtih LabVIEW,” in

Signal Processing Education Workshop, pp. 278–280, IEEE, 2006.
[5] eesof.tm.agilent.com/products/systemvue.
[6] D. Silage, Digital Communication Systems Using SystemVue. DaVinci

engineering Press, 2006.
[7] jdsp.asu.edu/jdsp.html.
[8] A. Spanias and V. Atti, “Interactive online undergraduate laboratories

using J-DSP,” IEEE Transactions on Education, vol. 48, pp. 735–749,
Nov. 2005.

[9] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits, “Compo-
sition and cloning in modeling and meta-modeling,” IEEE Transactions
on Control Systems Technology, vol. 12, pp. 263–278, Mar. 2004.

[10] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprin-
kle, and G. Karsai, “omposing domain-speci c design environments,”
Computer, vol. 34, pp. 44–+, Nov. 2001.

[11] www.isis.vanderbilt.edu/Projects/gme.
[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to

Algorithms. Cambridge, MA: MIT Press, 2nd ed., 2003.

2640

