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ABSTRACT

Recent attention on correlated multi-input multi-output sys-
tems has centered around the case of imperfect channel or
statistical information at the transmitter. The focus of this
work is on correlated channels with arbitrary antenna array
geometry and spacings, a coherent receiver, and imperfect
statistical knowledge at the transmitter. Leveraging a recently
proposed channel modeling paradigm that exploits processing
in the angular domain, we rst elucidate the structure of the
optimal schemes when ‘genie-aided’ perfect statistical infor-
mation is available at the transmitter. In the low-SNR case, we
then show that the beamforming scheme that is optimal when
perfect statistical information is available does not degrade
smoothlywith imperfections in the statistical information. We
then go on to show that there exists a certain low-complexity
beamforming approach which, while being sub-optimal in the
genie-aided case, is robust to statistical feedback as well as
the dynamics of its evolution.

Index Terms— Arbitrary antenna array architectures,
beamforming, correlation, fading channels, imperfect chan-
nel information, MIMO systems, nonuniform sampling, ro-
bustness.

1. INTRODUCTION

Research over the last decade has rmly established the util-
ity of multiple antennas at the transmitter and the receiver in
achieving signi cant spectral ef ciency gains. The realizabil-
ity of such gains in the presence of practical impairments like
spatial correlation, imperfect channel/statistical information
at the transmitter etc. has been the subject of much recent at-
tention. In this direction, many statistical channel models (ap-
plicable under different restrictions on the scattering environ-
ments) have been proposed in the literature and performance
metrics such as the information theoretic capacity, error prob-
ability etc. have been studied.
Recently in [1], we proposed a channel model that is ap-

plicable for antenna arrays with arbitrary geometry and an-
tenna spacings and is a generalization of the virtual repre-
sentation [2] for uniform linear arrays (ULAs). Furthermore,
we characterized the capacity of such channels with a coher-
ent receiver and ‘genie-aided’ perfect statistical information
at the transmitter; see Lemma 1 below. We also showed that
beamforming along a xed (but appropriately transformed)
direction is optimal in the low-SNR extreme, while uniform
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power signaling over a xed (but appropriately transformed)
eigen-space is optimal in the high-SNR extreme (Lemma 2).
The focus of this work is on the robustness of the low-SNR

optimal scheme to imperfections in statistical information.
Assuming that statistical information is fed back to the trans-
mitter via a B-bit error-free quantization scheme, we show
that for any xed choice of B, there exist scattering envi-
ronments that show a signi cant degradation in performance
with statistical uncertainty. On the other hand, we show that a
low-complexity scheme that beamforms along the dominant
eigen-mode of the transmit covariance matrix (which is sub-
optimal in the genie-aided case) is more robust to uncertain-
ties in statistics. The loss in performance with this scheme
depends only on how close the transmit spatial array matrix is
to being unitary and is (more or less) independent of the value
of B.

2. SYSTEM MODEL

Our focus is on a multi-antenna communication system with
Nt transmitters and Nr receivers and the system equation

y = Hx + n (1)

where y is the Nr × 1 received vector, x is the Nt × 1 trans-
mitted vector, and n is the Nr × 1 additive white Gaussian
noise vector. The channel matrixH can be written as

H =

∫ ∫ ∫
h(t, kr, kt)e

−j2πtW ar(kr)at(kt)
Hdtdkrdkt

where h(t, kr, kt) corresponds to the zero-mean complex gain
between transmit direction1 kt and receive direction kr at time
t due to an impulse applied at time 0,W is the signaling band-
width, and at(kt) and ar(kr) denote the Nt × 1 transmit and
Nr × 1 receive array steering vectors, respectively.
While the above equation corresponds to a continuous

channel representation [3], the system equation can be dis-
cretized by exploiting the following fact [1]: For a given an-
tenna array geometry and spacings, there exist matrices At

and Ar such that the channel H can be ef ciently approxi-
mated as

H ≈

Nr∑
i=1

Nt∑
j=1

Hang[i, j]ar(i)a
H
t (j) = ArHangA

H
t (2)

whereHang = {Hang[i, j]} denotes the channel in the angu-
lar domain with Hang[i, j] approximately independent with

1Both directions measured with respect to the horizontal axes, without
any loss in generality.

26211-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



zero mean, and at(i) and ar(j) denote the i-th and j-th col-
umn vectors of At and Ar, respectively. Assuming suf -
ciently rich scattering, the channel coef cients can be mod-
eled as Gaussian and hence, the statistics of Hang are deter-
mined by the second moments of its entries.
Critical to (2) is the existence of an appropriate, but xed

non-uniform sampling in the physical domain so as to create a
uniform, nonoverlapping partition in the angular domain (this
is analogous to the non-uniform sampling in time considered
in [4]). The xed linear transformation matrices that achieve
this sampling in the transmit and the receive domain are de-
noted by At and Ar, respectively. By de nition, these ma-
trices are non-singular; however, they may not be unitary or
even have unit-normed row or column vectors. In the special
case of uniform linear arrays (ULAs) at both the ends,At and
Ar reduce to unitary discrete Fourier transform matrices [2].
Note that while it may be possible to perform a Karhunen-
Loeve type decomposition of the channel H as in (2) with
a scattering environment-dependent choice of At and Ar as
in [5], it is crucial to note that the choices of At and Ar

that we propose in (2) are in fact independent of the scatter-
ing environment and are dependent only on the antenna array
geometry and spacing. In this aspect, our work follows the
philosophy prescribed in [2, 6]. The non-unitarity of At and
Ar lead to fundamentally new issues that will be explored in
this paper.

3. PERFORMANCE OF THE OPTIMAL
GENIE-AIDED SCHEME

In this section, we assume that perfect channel information is
available at the receiver while perfect (array and statistical)
information, that is, At, Ar and σ2

ij = E[|Hang[i, j]|
2] are

available at the transmitter. We call this scheme ‘genie-aided’
and distinguish it from a practical (low-complexity) scheme
(with imperfect channel information) which is the focus of
the subsequent sections. The performance of the genie-aided
scheme serves as a theoretical benchmark to compare the per-
formance of the practical scheme.
In this setting, the capacity C of the MIMO system with

spatial array matrices {At,Ar} is

C = sup
Q∈Q

E
[
log2 det

(
INr

+ ArHangA
H
t QAtH

H
angA

H
r

)]
= sup

Q∈Q

E
[
log2 det

(
(AH

r Ar)
−1 + HangA

H
t QAtH

H
ang

)]
+ log2 det(AH

r Ar)

where the optimization is over the setQ de ned asQ = {Q :
Q � 0, Tr(Q) ≤ ρ}. In prior work [1], we addressed the
issue of optimal signaling, summarized2 below.

Lemma 1 Given that the transmitter knows At, Ar and the
statistics of Hang, the optimal input is zero mean Gaussian
with input covariancematrix given byQopt = A−H

t DoptA
−1
t

where Dopt is a positive semi-de nite, diagonal matrix that
solves the following convex optimization problem:

Dopt = argmax
D

E
[
log2 det

(
(AH

r Ar)
−1 + HangDHH

ang

)]
such that Tr(D(AH

t At)
−1) ≤ ρ.

2See [1] for proofs of all statements.

The above optimization problem is a very standard prob-
lem: maximizing a concave function over a convex set and
hence many of the standard convex optimization procedures
are applicable. In the special case of ULAs [6], it is known
that in the low-SNR extreme, beamforming to the statistically
dominant transmit eigen-direction is capacity optimal while
in the high-SNR extreme, uniform power signaling across the
rank of Hang is capacity optimal. More generally, in the
intermediate-SNR regime, the rank ofQopt is non-decreasing
as ρ increases. With the more general channel model, these
results extend as follows.

Lemma 2 De ne the direction j� as

j� = argmax
j

∑
i σ2

ij

(∑
k |Ar[k, i]|2

)
(AH

t At)−1[j]
. (3)

Beamforming along j� (with Q = A−H
t DA−1

t , Tr(Q) = ρ,
and D having only the diagonal entry in the j�-th position
non-zero) is optimal in the low-SNR extreme. Let R denote
the set of indices {j :

∑
i σ2

ij(
∑

k |Ar[k, i]|2) > 0}. Uniform
power signaling scheme acrossR is optimal in the high-SNR

extreme.

4. PERFORMANCE OF A LOW-COMPLEXITY
SCHEME

We now focus on the low-SNR extreme and establish con-
nections between beamforming in the ULAs case and the
non-ULAs case. Consider the case where At and Ar are
unitary. In this setting, Qopt reduces to AtDoptA

H
t (with

the beamforming direction j� = arg maxj

∑
i σ2

ij ). That is,
the optimal scheme is equivalent to beamforming along the
dominant eigen-direction of the transmit covariance matrix
(Rt) de ned as Rt � E

[
HHH

]
. Note that Rt is equal to

AtE
[
HH

angHang

]
AH

t = AtDtA
H
t with Dt[j] =

∑
i σ2

ij .
This result is well-known, see e.g., [6].
It is natural to pose the question: How does this scheme

perform in the non-ULA case? Towards answering this ques-
tion, note the following relationship in the general case:

Rt = AtDtA
H
t =

Nt∑
j=1

Dt[j] at(j)a
H
t (j) (4)

Dt[j] =
∑

i

σ2
ij

∑
k

|Ar[k, i]|2.

Using the SVD ofAt (= UtΛtV
H
t ), we have

Rt = Ut

(
ΛtV

H
t DtVtΛt

)
UH

t

= UtÛΛ̂ÛHUH
t (5)

where we assume an SVD of the form ÛΛ̂ÛH for the matrix
in the parenthesis. We can also see that

Qopt = A−H
t DoptA

−1
t

= Ut

(
Λ−1

t VH
t DoptVtΛ

−1
t

)
UH

t

= UtŨΛ̃ŨHUH
t (6)

where an SVD of the form ŨΛ̃ŨH is assumed for the matrix
in the parenthesis. From (5) and (6), we thus see that, in gen-
eral the eigenvectors ofQopt andRt are not the same. In other

2622



words, beamforming along the eigenvectors of Rt is strictly
sub-optimal from a capacity viewpoint in the non-ULA case.
The following proposition captures the loss in performance
that results through the use of this sub-optimal scheme. For
this, we need the following de nition.

De nition 1 Let B be an n × n Hermitian matrix with

δB,j =

(∑
k �=j |B[j, k]|

)1−α (∑
k �=j |B[k, j]|

)α

|B[j]|
.

Then, B is said to satisfy the Ostrowskii condition for some
α ∈ (0, 1) if

ΔB � max
j=1,··· ,n

δB,j < 1. (7)

The Ostrowskii condition is a measure of the diagonal domi-
nance of B: the more diagonally dominant B is, the smaller
ΔB is and vice versa. Note that the extreme cases of α = 0
and α = 1 correspond to whether the diagonal entries dom-
inate the off-diagonal entries in the row or the column cor-
responding to that diagonal entry. The general case of α ∈
(0, 1) captures diagonal dominance over the weighted off-
diagonal entries. A matrix satisfying the Ostrowskii condition
is invertible.

Proposition 1 Let the average mutual information of the
above sub-optimal scheme be IRt,bf(ρ) and consider the
low-SNR regime, ρ < ρlow where ρlow is de ned as

ρlow �
(AH

t At)
−1[j�]∑

i σ2
ij� (

∑
k |Ar[k, i]|2)

. (8)

If AH
t At satis es the Ostrowskii condition for some α ∈

(0, 1), we have (up to the dominant rst-order term)

C(ρ) − IRt,bf(ρ)

C(ρ)
≤

(
ΔAH

t
At

)2

1 −
(
ΔAH

t
At

)2 . (9)

The Ostrowskii condition onAH
t At implies that

λmax(A
H
t At) ≤ max

j

(
AH

t At[j] + δAH

t
At,j

)
≤ 2 max

j
AH

t At[j],

λmin(AH
t At) ≥ min

j

(
AH

t At[j] − δAH
t

At,j

)
> 0

and hence, At is well-conditioned. In other words, the fol-
lowing general principle holds: As At becomes more close
to being unitary,AH

t At becomes more diagonally dominant,
and hence, the value ofΔAH

t
At
reduces and the performance

of the sub-optimal scheme approaches that of the optimal
scheme. For example, (as noted earlier) in the special case
whereAt is unitary, both the schemes coincide and this con-
clusion is concurred by the rst-order term in (9) reducing to
zero.

5. ROBUSTNESS OF THE TWO SCHEMES

Most works in the literature assume that the channel statistics
change at a suf ciently slow rate so that they can be acquired

at the transmitter with negligible cost. While this may be rea-
sonable in certain low mobility situations, in general, the re-
ceiver has to estimate the statistical information and feed it
back to the transmitter. We now account for the feedback
cost and study the robustness of the two schemes to statistical
feedback.
Since At and Ar are independent of the scattering envi-

ronment, it is reasonable to assume that they can be acquired
perfectly via either deterministic techniques upon knowledge
of antenna geometry and spacings [4] or long-term averag-
ing techniques that extract the array information by averag-
ing out the imprint of the scattering environment in the short-
term channel statistics. This knowledge implies that deter-
mining the optimal beamforming direction requires knowl-
edge of only {Dt[j] =

∑
i σ2

ij

∑
k |Ar[k, i]|2} at the trans-

mitter. Using its knowledge of At, the transmitter then com-
putes j� as in (3). Thus, optimal beamforming requires feed-
back of Nt positive numbers, {Dt[j]}, that are a function of
the short-term channel statistics.
We assume the following B-bit quantization scheme for

Dt[j] and error-free estimates D̂t[j] at the transmitter. Let
the transmitter and the receiver have an a priori knowledge
of a quantization range [0, σ2

max]. For e.g., a suitable choice
of σ2

max is σ2
max = c · maxE maxj

∑
i σ2

ij

∑
k |Ar[k, i]|2 for

some suitable c > 1. The class E corresponds to a representa-
tive family of scattering environments that the transmitter and
the receiver encounter in a given communication scenario.
The choice of c is such that for any scattering environment
in E and the associated statistics {σ2

ij}, we have

σ2
max∑

i σ2
ij

∑
k |Ar[k, i]|2

= O(1). (10)

The range [0, σ2
max] is quantized with B-bits and hence the

length of each quantization interval is σ2
max

2B . By neglecting
the error and delay associated with the feedback link, for any
j, the error in estimating Dt[j] is at most δerr =

σ2
max

2B+1 . The
transmitter can use D̂t[j] to compute the optimal beamform-
ing direction akin to (3).
Alternatively, the transmitter could estimate Rt as R̂t =∑Nt

j=1 D̂t[j] at(j)a
H
t (j). Then, the transmitter can signal

sub-optimally along the dominant eigenvector of R̂t. The
following results study the robustness of the two beamform-
ing schemes to imperfections in statistical information. Given
any xed scattering environment, if B is large enough to
quantize {Dt[j]} nely, the following proposition claims no
loss due to statistical feedback.

Proposition 2 For any given scattering environment and the
corresponding {Dt[j]}, if B satis es

B > log2

(
1

minj �=j� (AH
t At)−1[j]

+
1

(AH
t At)−1[j�]

)

+ log2

⎛
⎝ σ2

max
Dt[j�]

(AH

t
At)−1[j�]

− maxj �=j�
Dt[j]

(AH

t
At)−1[j]

⎞
⎠ − 1 � Bmin

then, the optimal scheme does not suffer any loss due to sta-
tistical feedback.
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For a xed environment,Bmin could be arbitrarily large. For
example, consider At unitary and Dt[j

�] arbitrarily close to
maxj �=j� Dt[j]. That is,Rt is such that its rst two eigenval-
ues are close enough. Using the same logic as in Prop. 2, we
have the following corollary.

Corollary 1 Let Ibf,B(ρ) denote the average mutual infor-
mation of the optimal scheme with B-bit statistical feedback.
There exist scattering environments and realizations {σ2

ij} as-
sociated with them such that

C(ρ) − Ibf,B(ρ)

C(ρ)
≈ O(1) ·

1

2B
. (11)

On the other hand, we have the following proposition.

Proposition 3 Let IRt,bf,B(ρ) denote the average mutual in-
formation of the sub-optimal scheme with B-bit statistical
feedback. Let URt

denote an eigenvector matrix of Rt and
denote the matrixUH

Rt
At byV. Then, for any B, we have

IRt,bf(ρ) − IRt,bf,B(ρ)

C(ρ)

≤
λmax(A

H
t At)

λmin(AH
t At)

·
∑
i>1

|
∑

k V[i, k](D̂t[k] − Dt[k])V�[1, k]|2

(λmax(Rt) − λi(Rt))
2 .

Note that V is the projection of the eigenvectors of Rt on to
the transmit spatial array matrix. When At is unitary, V re-
duces to I and the above upper bound reduces to zero since
the summation is over the indices i > 1. Similarly, when
At is close to being unitary, V is close to being I and the
upper bound is small even for B = 1. That is, the perfor-
mance of the sub-optimal scheme is critically dependent on
how close At is to being unitary with very little dependence
on the choice of B. Now, we can combine Props. 1- 3 and
Cor. 1 to obtain the main statement of this paper.

Theorem 1 For any realization of the channel statistics, the
relative loss in average mutual information of the sub-optimal
scheme satis es

C(ρ) − IRt,bf,B(ρ)

C(ρ)
≤

(
ΔAH

t
At

)2

1 −
(
ΔAH

t
At

)2

+
λmax(A

H
t At)

λmin(AH
t At)

·
∑
i>1

|
∑

k V[i, k](D̂t[k] − Dt[k])V�[1, k]|2

(λmax(Rt) − λi(Rt))
2 .

If B > Bmin (which is given in Prop. 2), then the optimal
scheme incurs no loss due to statistical feedback. However,
for any xed B, there exists channel statistics such that the
relative loss in average mutual information of the optimal
scheme satis es

C(ρ) − Ibf,B(ρ)

C(ρ)
≈

O(1)

2B
.

6. DISCUSSION

We now focus attention on the practical case of small B (cor-
responding to a low-rate feedback scheme). Our main con-
clusion is: Given that At is known at the transmitter (and is

unitary), statistical feedback has negligible impact on the sub-
optimal scheme. On the other hand, for any given scattering
environment, if B < Bmin (corresponding to that environ-
ment), the sub-optimal scheme can lead to a higher through-
put than the optimal3 scheme.
However, more important is the behavior of the optimal

scheme in response to change in channel statistics (possibly
due to mobility in realistic situations). Cor. 1 establishes that
the low-SNR optimal beamforming scheme is very sensitive
to feedback in this regime and suffers a worst-case relative
distortion on the order of 2−B . In the small-B regime, this
relative loss could be signi cantly larger than that incurred by
the sub-optimal scheme (with feedback). Thus, from a robust-
ness perspective, the sub-optimal scheme can perform much
better than the optimal scheme in practice. The advantage
of the sub-optimal scheme in the case of statistical feedback
is also intuitive upon closer introspection of the structure of
the two signaling schemes. Note that the optimal signaling
scheme performs a transmit array (transposition and) inver-
sion which reduces to signaling along the transmit array man-
ifold whenAt is near-unitary. In this case, even with low lev-
els of feedback (small-B), the eigenvectors of R̂t are close to
those ofAt.
The above discussion suggests that there is a need to rein-

vestigate the structure and the robustness of optimal signal-
ing schemes with practical impairments such as channel state
feedback. In the nal version of this paper, we will provide
insights on the robustness of the performance of the optimal
rank-M scheme (M > 1) with respect to the sub-optimal
scheme that excites theM dominant eigenmodes of Rt. We
will also provide numerical results to illustrate our results.
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