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ABSTRACT

We describe an adaptive beamforming algorithm for time-
division multiple-access (TDMA) signals that utilizes a mod-
i ed least-squares (LS) cost function, and analyze its perfor-
mance using a stochastic model. The beamformer weights
are computed via a two-step procedure: initial weights are
calculated from the training sequence, and these are re ned
by a semi-blind algorithm using the modi ed LS cost func-
tion. The main goal of the paper is to analyze this algorithm
using a stochastic model and Wiener lter theory for the case
when the look-direction vector is mismatched. The perfor-
mance of the proposed adaptive beamformer is also evaluated
using simulated TDMA data.

Index Terms— Array signal processing, least-squares
methods, interference suppression, time-division multiaccess.

1. INTRODUCTION

In cellular radio systems, signals transmitted in one cell can
interfere with those in other cells that use the same frequen-
cies. We investigate an adaptive beamforming receiver that
is designed to suppress this cochannel interference (CCI) in
a TDMA system. Usually, the adaptive beamformer weights
are calculated using only the known training sequence con-
tained in each TDMA slot (burst). However, the CCI affect-
ing the coded data could differ signi cantly from that during
the training sequence. In an effort to solve this problem, the
equalizer output could be combined with the original training
sequence to construct an extended training sequence for the
beamformer [1]. A modi ed burst-based LS estimator with
projections was proposed in [2], and a regularized LS algo-
rithm for constant modulus (CM) signals was described in [3];
however, both of these approaches have a high computational
complexity. Compared to previous work, the proposed semi-
blind algorithm is quite simple as well as practical because of
the LS approximation used for the CM signals [4].

In the iterative receiver, the beamformer weights are
updated using the semi-blind algorithm in a multistage ar-
chitecture as shown in Figure 1. In the rst stage, the initial
beamformer weights are computed using the known training
sequence, and these are re ned using an extended training se-

quence in the semi-blind algorithm. In the second stage, the
initial beamformer weights are computed using re-encoded
data, and then a semi-blind algorithm compensates for weight
distortions caused by errors in the re-encoded data. For the
stochastic analysis, we assume BPSK signals and employ
Wiener lter theory. We assume that the look-direction vec-
tor is not precisely known, i.e., it has an error component and
thus is mismatched [5].

2. SUMMARY OF THE ITERATIVE SEMI-BLIND
BEAMFORMING ALGORITHM

In the rst stage of the algorithm, the beamformer weights
are calculated using a two-step procedure. First, initial beam-
former weights w0 are computed by minimizing the LS cost
function J0(w0) =

∑m−1

k=0
|w0

Hx(k) − tb(k)|2 where tb is
the known training sequence of length m, the subscript b de-
notes the beamformer, the (column) vector x contains the ar-
ray data, and the superscript H denotes complex conjugate
transpose. Second, the re ned beamformer weights w1 are
computed by minimizing

J1(w1) =

m−1∑
k=0

|wH
1 x(k)− tb(k)|2 +

j−1∑
k=m

|wH
1 z0(k)− 1|2

(1)
where j − m is the length of the coded data. The LS cost
function for CM signals was modi ed in order to generate
the semi-blind algorithm: J(w1) =

∑j−1

k=m(|wH
1 x(k)|2 −

1)2 =
∑j−1

k=m(wH
1 x(k)xH(k)w1 − 1)2 ≈

∑j−1

k=m(wH
1 x(k)

xH(k)w0 − 1)2 =
∑j−1

k=m(wH
1 z0(k) − 1)2 where z0(k)

Δ
=

x(k)xH(k)w0. Note that we have exploited the approxima-
tion xH(k)w(n) ≈ xH(k)w(k− 1) when k is close to n [6].
In the second stage, the initial beamformer weights w2 are
computed using re-encoded data, and then are re ned to gen-
erate w3 using the following semi-blind cost function:

J2(w3) =

j−1∑
k=m

|wH
3 x(k)−tbr(k−m)|2+

j−1∑
k=m

|wH
3 z2(k)−1|2

(2)
where z2(k)

Δ
=x(k)xH(k)w2 and tbr are the re-encoded data

for the beamformer.
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Fig. 1. Multistage receiver using the semi-blind beamformer.

3. STOCHASTIC ANALYSIS

We assume that one desired BPSK signal b1 and two inter-
fering BPSK signals b2 and b3 arrive at a two-element array
as shown in Figure 2. b1 consists of a known training se-
quence and coded data, b2 is interference during the training
sequence of b1, and b3 is interference during the coded data
of b1. At the two antenna elements, the received signals xt in
the region of the training sequence of b1 are represented by
xt = [xt1, xt2]

T , and those in the region of the coded data of
b1 are given by xd = [xd1, xd2]

T . Thus, xt1 = b1 + b2 + n1,
xt2 = b1e

jθ1 + b2e
jθ2 + n2, xd1 = b1 + b3 + n3, and

xd2 = b1e
jθ1+b3e

jθ3+n4 where the subscripts t and d denote
the training sequence and coded data in a slot, respectively.
The {bi} are independent and identically distributed with al-
phabet {−1, 1}, and thus have zero mean and unit variance,
i.e., E[bibj ] = δij . The additive noise ni is white and Gaus-
sian with zero mean and variance σ2

n, i.e., E[nin
∗

j ] = σ2
nδij .

The deterministic phase θi = −2πΔcosφi/λ represents the
carrier phase shift across the two antenna elements, where φi

is the angle of incidence, Δ is the interelement spacing, and
λ is the wavelength.

The initial beamformer weights w0 are computed from
the Wiener-Hopf equation. De ne the correlation matrix
Rt

Δ
= E[xtx

H
t ] where xt was previously speci ed, and de ne

the cross-correlation vector

pt

Δ
=E[xtd

∗

t ] = E[xt1b
∗

1 xt2b
∗

1]
T = [1 ejθ1 ]T (3)

where dt represents the desired signal, and the superscript ∗

denotes complex conjugation. Let w0

Δ
= [wt1, wt2]

T be the
initial beamformer weights given by the Wiener solution

w0 = R
−1

t pt. (4)

The re ned beamformer weights w1 are computed from
xd using w0. De ne the vector z

Δ
=xdx

H
d w0 and partition

the correlation matrix as follows:

Rcd
Δ
= E[zzH ] = E

[
A B
C D

]
(5)

where the subscript cd denotes coded data and

E[A] = wt1E[xd1x
∗

d1xd1x
∗

d1]w
∗

t1 +wt2E[xd1x
∗

d2xd1x
∗

d1]w
∗

t1

+ wt1E[xd1x
∗

d1xd2x
∗

d1]w
∗

t2 + wt2E[xd1x
∗

d2xd2x
∗

d1]w
∗

t2

E[B] = wt1E[xd1x
∗

d1xd1x
∗

d2]w
∗

t1+wt2E[xd1x
∗

d2xd1x
∗

d2]w
∗

t1

+ wt1E[xd1x
∗

d1xd2x
∗

d2]w
∗

t2 + wt2E[xd1x
∗

d2xd2x
∗

d2]w
∗

t2

E[C] = wt1E[xd2x
∗

d1xd1x
∗

d1]w
∗

t1+wt2E[xd2x
∗

d2xd1x
∗

d1]w
∗

t1

+ wt1E[xd2x
∗

d1xd2x
∗

d1]w
∗

t2 + wt2E[xd2x
∗

d2xd2x
∗

d1]w
∗

t2

E[D] = wt1E[xd2x
∗

d1xd1x
∗

d2]w
∗

t1+wt2E[xd2x
∗

d2xd1x
∗

d2]w
∗

t1

+ wt1E[xd2x
∗

d1xd2x
∗

d2]w
∗

t2 + wt2E[xd2x
∗

d2xd2x
∗

d2]w
∗

t2.
(6)

The components are given by

E[xd1x
∗

d1xd1x
∗

d1] = 8 + 8σ
2
n + 2σ

4
n

E[xd1x
∗

d2xd1x
∗

d1] = 4e
−jθ1 + 4e

−jθ3 + 2e
−jθ1σ

2
n

+2e
−jθ3σ

2
n

E[xd1x
∗

d1xd2x
∗

d1] = 4e
jθ1 + 4e

jθ3 + 2e
jθ1σ

2
n + 2e

jθ3σ
2
n

E[xd1x
∗

d2xd2x
∗

d1] = 4 + 2e
j(θ3−θ1) + 2e

j(θ1−θ3) + 4σ
2
n

+2σ
4
n

E[xd1x
∗

d1xd1x
∗

d2] = 4e
−jθ1 + 4e

−jθ3 + 2e
−jθ1σ

2
n

+2e
−jθ3σ

2
n

E[xd1x
∗

d2xd1x
∗

d2] = 2e
−j2θ1 + 2e

−j2θ3 + 4e
−j(θ1+θ3)

E[xd1x
∗

d1xd2x
∗

d2] = 4 + 2e
j(θ3−θ1) + 2e

j(θ1−θ3) + 4σ
2
n

+2σ
4
n

E[xd1x
∗

d2xd2x
∗

d2] = 3e
−jθ1 + 3e

−jθ3 + e
j(θ3−2θ1)

+e
j(θ1−2θ3) + 2(e−jθ1 + e

−jθ3)σ2
n

E[xd2x
∗

d1xd1x
∗

d1] = 4e
jθ1 + 4e

jθ3 + 2e
jθ1σ

2
n + 2e

jθ3σ
2
n

E[xd2x
∗

d2xd1x
∗

d1] = 4 + 2e
j(θ3−θ1) + 2e

j(θ1−θ3) + 4σ
2
n

+2σ
4
n

E[xd2x
∗

d1xd2x
∗

d1] = 2e
j2θ1 + 4e

j(θ1+θ3) + 2e
j2θ3

E[xd2x
∗

d2xd2x
∗

d1] = 3e
jθ1 + 3e

jθ3 + e
j(2θ1−θ3) + e

j(2θ3−θ1)

+2e
jθ1σ

2
n + 2e

jθ3σ
2
n
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Fig. 2. Scenario for the stochastic analysis.

E[xd2x
∗

d1xd1x
∗

d2] = 4 + 2e
j(θ3−θ1) + 2e

j(θ1−θ3) + 4σ
2
n

+2σ
4
n

E[xd2x
∗

d2xd1x
∗

d2] = 3e
−jθ1 + 3e

−jθ3 + e
j(θ3−2θ1)

+e
j(θ1−2θ3) + 2(e−jθ1 + e

−jθ3)σ2
n

E[xd2x
∗

d1xd2x
∗

d2] = 3e
jθ1 + 3e

jθ3 + e
j(2θ1−θ3) + e

j(2θ3−θ1)

+2e
jθ1σ

2
n + 2e

jθ3σ
2
n

E[xd2x
∗

d2xd2x
∗

d2] = 6 + e
j2(θ3−θ1) + e

j2(θ1−θ3) + 8σ
2
n

+2σ
4
n, (7)

which use the following fourth-order moment [7]:

E[(x + y)4] = E[x4] + E[y4] + 6E[x2]E[y2] (8)

where x and y are independent zero-mean random variables.
The cross-correlation vector can be rewritten as pcd

Δ
=E[zd∗d]

= E[z] = E[xdx
H
d w0] where dd = 1 is the xed modulus

(because of the BPSK data).
For the semi-blind algorithm, the input correlation matrix

can be expressed as

Rsb = E

[
[xt z]

[
xH

t

zH

]]
= Rt + Rcd (9)

where the subscript sb denotes semi-blind. The corresponding
cross-correlation vector is

psb = E

[
[xt z]

[
d∗t
d∗d

]]
= pt + pcd, (10)

and the re ned beamformer weights are

w1 = R
−1

sb psb. (11)

In the second stage (shown in Figure 1), w2 and w3 are
derived using a similar procedure. The initial beamformer
weights w2 are calculated using xd instead of xt. De ne
the correlation matrix in the second stage as Rd

Δ
=E[xdx

H
d ]

where xd was previously speci ed. Also, de ne the cross-
correlation vector

pd

Δ
= E[xdd

∗

cd] = E[xdb
∗

1] = [1 ejθ1 ]T . (12)

Letting w2

Δ
= [wd1, wd2]

T be the initial beamformer weights
in the second stage, the Wiener weights are given by

w2 = R−1

d pd. (13)

The re ned beamformer weights w3 are computed using xd

and w2 (all steps are similar to those in the derivation for w1

in the rst stage). Thus, using the statistics for this scenario,
we have derived closed-form expressions for the Wiener
weights – including those for the semi-blind algorithm.

4. COMPUTER SIMULATIONS

4.1. Stochastic Model

We evaluate the performance of the semi-blind beamformer
using the stochastic model for the scenario in Figure 2. In the

rst stage, the simulation steps were as follows: (i) Calculate
the beamformer weights w0 in (4) and w1 in (11). The angles
of arrival (AOAs) for b1, b2, and b3 were 60◦, 90◦, and 150◦,
respectively. (ii) 106 independent samples of xd were gen-
erated and processed by the beamformers using the Wiener
weights. (iii) The bit error rate (BER) was measured at the
beamformer output. Figure 3 shows that the semi-blind algo-
rithm improves the performance of the beamformer because it
more effectively suppresses the CCI affecting the coded data
of b1. The performance of the semi-blind beamformer us-
ing the LS method in Figure 1 is also examined; observe that
the BER results are similar to that predicted using the Wiener
weights.

In the second stage, since the re-encoded data could in-
clude bit errors, the cross-correlation vector p might be dis-
torted (i.e., look-direction vector mismatch). In the stochas-
tic model, the distorted cross correlation vector can be repre-
sented by p̂d = pd + β where pd is de ned in (12) and β

models the cross-correlation distortion [5]. We assume that
β is inversely proportional to the signal-to-noise ratio (SNR)
in order to quantify the effects of the re-encoded data errors.
The simulation steps were as follows: (i) Calculate the beam-
former weights w2 in (13) and w3. Note that w2 and w3 are
computed using p̂d instead of pd in (12). The AOAs for b1,
b2, and b3 were 60◦, 90◦, and 150◦, respectively. (ii) 1000
independent samples of xd were generated and processed by
the beamformer. (iii) Repeat steps (i) and (ii) for 1000 inde-
pendent trials. Figure 4 shows that the semi-blind algorithm
improves the performance of the beamformer, even though
the initial beamformer weights are distorted. This is achieved
because the semi-blind beamformer weights are computed not
only by using re-encoded data, but also by incorporating the
CM component to compensate for the effects of errors in the
re-encoded data.

4.2. Simulated TDMA Data

We also veri ed the multistage semi-blind beamformer in
Figure 1 using synchronization channel (SCH) data for the
Global System for Mobile (GSM) communications. The
SCH channel coding structure is relatively simple and does
not require additional complexity (e.g., the interleaving in the
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Fig. 4. Stochastic analysis for the second stage.

traf c channel coding). Laurent’s decomposition [8] was em-
ployed to detect the Gaussian minimum-shift keying (GMSK)
signals. A four-element antenna array and four stages were
used in the simulations. One desired signal and two inter-
fering signals impinged on the antenna array with random
angles in the range [0◦, 180◦]. The sampling interval of the
transmitted signals was Tb/8, and that of the received array
data was Tb (the bit duration). Figure 5 shows that re-encoded
data improves the performance of the beamformer in the rst
few stages. Furthermore, the semi-blind algorithm enhances
the performance of the beamformer, and improves the BER
performance of the decoder.

5. CONCLUSION

We have presented a semi-blind beamforming algorithm for
TDMA signals using a modi ed LS cost function, and an-
alyzed its performance via a stochastic model, including
the case where there is look-direction vector mismatch. In
the rst stage, the semi-blind algorithm improves the per-
formance of the beamformer because it suppresses the CCI
affecting the coded data. In the second stage, this algorithm
compensates for the initial weight distortion caused by the
look-direction vector mismatch; the all-ones “training” se-
quence for the CM blind adaptation compensates for errors in
the re-encoded data.
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Fig. 5. BER performance of the semi-blind beamformer.
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