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ABSTRACT

The problem of distributed beamforming is considered for a net-
work which consists of a transmitter, a receiver, and r relay nodes.
Assuming that the second order statistics of the channel coefficients
are available, we design a distributed beamforming technique via
maximization of the receiver signal-to-noise ratio (SNR) subject to
individual relay power constraints. We show that using semi-definite
relaxation, this SNR maximization can be turned into a convex fea-
sibility semi-definite programming problem, and therefore, it can be
efficiently solved using interior point methods. We also obtain a per-
formance bound for the semi-definite relaxation and show that the
semi-definite relaxation approach provides a c-approximation to the
(nonconvex) SNR maximization problem, where c = O((log r)−1)
and r is the number of relays.

Index Terms— Distributed beamforming, relay networks, semi-
definite programming, convex feasibility problem, distributed signal
processing.

1. INTRODUCTION

Emerging wireless technologies, such as sensor and relay networks,
have found applications in cooperative communications [1]-[3]. In
fact, users of a wireless network can cooperate by relaying each other
messages thus improving the communications reliability. However,
the limited communication resources, such as battery lifetime of the
devices and the scarce bandwidth, challenge the design of such co-
operative communication schemes. Therefore, while ensuring that
each user receives a certain quality of service (QoS), one is often
confronted with the challenge that communication resources are sub-
ject to stringent constraints.

Various cooperative communication schemes have been presented
in the literature. Examples are amplify-and-forward [3], coded co-
operation [4], and compress-and-forward [5] schemes. Among these
schemes, the amplify-and-forward approach is of particular interest
as it can be easily implemented.

In [6], a distributed beamforming strategy has been developed
for the case where the relaying nodes cooperate to build a beam to-
wards the receiver under individual relay power constraints. The au-
thors of [6] assume that each relay knows the instantaneous CSI for
both backward (transmitter to the relay) and forward (relay to the re-
ceiver) links. Using such an assumption, the network beamforming
approach is simplified to a distributed power control method. In fact,
each relay matches the phase of its weight vector to the total phase of
the backward and forward links. Therefore, only the amplitudes of
the complex weights remain to be determined. These amplitudes are
then obtained through maximizing the signal-to-noise ratio (SNR)
at the receiver while guaranteeing that the individual relay powers
meet the corresponding constraints. Interestingly enough, such a

maximization results in relay powers that are not necessarily at their
maximum allowable values. The relaying scheme developed in [6] is
based on the availability of instantaneous CSI, and therefore, it does
not allow any uncertainty in the channel modeling.

In this paper, we consider the problem of distributed beamform-
ing under the assumption that the second order statistics of the chan-
nel coefficients are available. Such an assumption allows us to con-
sider uncertainty in the channel modeling through introducing the
covariance matrices of the channel coefficients. Based on such an as-
sumption, we develop a distributed beamforming algorithm through
maximization of the receiver SNR subject to individual relay power
constraints. We show that in the case of individual relay power con-
straints, the beamforming problem can be turned into a semi-definite
programming (SDP) problem which can be efficiently solved using
interior point methods. We also analyze the performance of the
semi-definite relaxation and prove that the semi-definite relaxation
technique provides a c-approximation to the (nonconvex) SNR max-
imization problem, where c = O((log r)−1) and r is the number of
relays.

2. SYSTEMMODEL

Consider a wireless network which consists of a transmitter, a re-
ceiver, and r relay nodes. We assume that due to the poor quality
of the channel between the transmitter and receiver, there is no di-
rect link between them. As a result, the transmitter deploys the relay
nodes to communicate with the receiver. Each relay has a single an-
tenna for both transmission and reception. Assuming a flat fading
scenario, let fi denote the channel coefficient from the transmitter
to the ith relay and gi represent the channel coefficient from the ith
relay to the receiver. We also assume that the second order statistics
of the channel coefficients {fi}r

i=1 and {gi}r
i=1 are known. In fact,

we model fi and gi as random variables with known second order
statistics. Considering a two-step amplify-and-forward (AF) proto-
col, the transmitter broadcasts to the relays, during the first step, the
signal

√
P0s, where s is the information symbol and P0 is the trans-

mit power. It is assumed that E{|s|2} = 1, where E{·} represents
the statistical expectation, and |·| denotes the amplitude of a complex
number. The signal xi received at the ith relay is given by

xi =
√

P0 fi s + νi (1)

where νi is the noise at the ith relay whose variance is known to
be σ2

ν . During the second step, the ith relay transmits the signal yi

which can be expressed as

yi = wixi (2)
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where wi is the complex beamforming weight used by the ith relay.
At the destination, the received signal can be written as

z =
r∑

i=1

giyi + n (3)

where z is the received signal and n is the receiver noise whose
variance is known to be σ2

n. Using (1) and (2), we can rewrite (3) as

z =

r∑
i=1

giwixi + n

=
√

P0

r∑
i=1

wifi gis︸ ︷︷ ︸
signal component

+

r∑
i=1

wigiνi + n

︸ ︷︷ ︸
total noise, nT

. (4)

are used:
Using (4) and assuming that the relay noises {νi}r

i=1, the re-
ceiver noise n, and the channel coefficients {gi}r

i=1 are all indepen-
dent from each other, the total noise power Pn can then be obtained
as

Pn = E{|nT |2}

= E

{
r∑

i,j=1

wiw
∗
j gig

∗
j

}
E{|νi|2}︸ ︷︷ ︸

σ2
ν

+E{|n|2}

= w
H
Qw + σ2

n (5)

where (·)∗ represents complex conjugate, (·)H denotes Hermitian
transpose, and the following definitions are used:

w � [w1 w2 . . . wr]
T

Q � σ2
νE{ggH}

g � [g1 g2 · · · gr]
T .

Here, (·)T is the transpose operator.
Also, using (4), the signal component power Ps can be obtained

as

Ps = E

{
P0

∣∣∣∣∣
r∑

i=1

wifigi

∣∣∣∣∣
2

|s|2
}

= P0E

{
r∑

i,j=1

wiw
∗
j figif

∗
j g∗j

}
E{|s|2}︸ ︷︷ ︸

1

= w
H
Rw (6)

where the following definitions are used:

h � [f1g1 f2g2 . . . frgr]
T = f � g

R � P0E{hh
H} = P0E{(f � g)(f � g)H} . (7)

Here, � represents the element-wise Schur-Hadamard product.

3. SNR MAXIMIZATION

Our goal is to maximize the receiver SNR subject to individual relay
power constraints. Such a case is of particular interest when the relay
nodes are restricted in their battery lifetimes. The ith relay transmit

power is given by αi|wi|2, where αi � P0E{|fi|2} + σ2
ν . In this

case, we aim to solve the following optimization problem:

max
w

SNR (8)

subject to αi|wi|2 ≤ Pi for i = 1, 2, . . . , r

or, equivalently:

max
w

wHRw

σ2
n + wHQw

(9)

subject to αi|wi|2 ≤ Pi for i = 1, 2, . . . , r

where Pi is the maximum allowable transmit power of the ith relay.
Using the definition X � wwH , the optimization problem in (9)
can be written as

max
X

tr(RX)

σ2
n + tr(QX)

(10)

subject to αi|wi|2 ≤ Pi for i = 1, 2, . . . , r ,

rankX = 1, and X � 0

or, equivalently, as

max
X,t

t (11)

subject to tr (X(R − tQ)) ≥ σ2
nt ,

Xii ≤ Pi/αi for i = 1, 2, . . . , r ,

rankX = 1, and X � 0

where tr(·) represents the trace of a matrix andX � 0means thatX
is constrained to be a symmetric positive semi-definite matrix. The
optimization problem in (11) is not convex and may not be amenable
to a computationally efficient solution. Let us then ignore the rank
constraint in (11). That is, using a semi-definite relaxation, we aim
to solve the following optimization problem:

max
X,t

t (12)

subject to tr (X(R − tQ)) ≥ σ2
nt

and Xii ≤ Pi/αi for i = 1, 2, . . . , r

and X � 0 .

Due to the relaxation, the matrix Xopt obtained by solving the op-
timization problem in (12) will not be of rank one in general. If
Xopt happens to be rank one, then its principal component will be
the optimal solution to the original problem. Note that the optimiza-
tion problem in (12) is quasiconvex. In fact, for any value of t, the
feasible set in (12) is convex. Let tmax be the maximum value of t
obtained by solving the optimization problem (12). If, for any given
t, the convex feasibility problem [7]

find X (13)
such that tr (X(R − tQ)) ≥ σ2

nt

and Xii ≤ Pi/αi for i = 1, 2, . . . , r

and X � 0

is feasible, then we have tmax ≥ t. Conversely, if the convex fea-
sibility optimization problem (13) is not feasible, then we conclude
tmax < t. Therefore, we can check whether the optimal value tmax

of the quasiconvex optimization problem in (12) is smaller than or
greater than a given value t by solving the convex feasibility prob-
lem (13). If the convex feasibility problem (13) is feasible then we

2606



have tmax ≥ t. If the convex feasibility problem (13) is infeasible,
then we know that tmax < t. Based on this observation, one can use
a simple algorithm to solve the quasiconvex optimization problem
(12) using bisection technique, solving a convex feasibility problem
at each step. We assume that the problem is feasible, and start with
an interval [l u] known to contain the optimal value tmax. We then
solve the convex feasibility problem at its midpoint t = (l + u)/2,
to determine whether the optimal value is larger or smaller than t.
We update the interval accordingly to obtain a new interval. That is,
if t is feasible, then we set l = t, otherwise, we choose u = t and
solve the convex feasibility problem in (13) again.

This procedure is repeated until the width of the interval is small
enough. Below we summarize the bisection technique:

1. Select l < tmax, u > tmax, and tolerance ε > 0.
2. t := (l + u)/2.
3. Solve the convex feasibility problem (13).
4. If (13) is feasible l := t, otherwise u := t.
5. If u − l < ε stop, otherwise go to step 2.

To solve the convex feasibility problem (13), one can use the
well-studied interior point based methods. For example, the SeDuMi
[8] is an interior point method based package which produces a fea-
sibility certificate if the problem is feasible. Once the maximum fea-
sible value for t is obtained, one can replace it into (12). This turns
(12) into a convex problem which can also be solved efficiently us-
ing interior point based methods. In semi-definite relaxation, the
solution may not be rank one in general. Several randomization
techniques have been proposed in the literature which can provide
a satisfactory approximation to the problem (11) from the solution
to the SDP problem [9]. Interestingly, in our extensive simulation
results, we have never encountered a case where the solution to the
SDP problem has a rank higher than one.

For cases where SDP problem has a solution with rank higher
than one, it is possible to establish a bound for performance of the
randomization technique. It can be shown that the SDP relaxation
approach provides a c = O((log r)−1) approximation to the non-
convex fractional quadratic optimization problem (9). To show this,
consider the problem

max
w

wHRw

σ2
n + wHQw

(14)

subject to w
H
Giw ≤ 1, i = 1, 2, ..., r

whereGi is a matrix with all zero entries except for the ith diagonal
element which is equal to αi/Pi. The SDP relaxation can be written
as

max
w

tr(RX)

σ2
n + tr(QX)

(15)

subject to tr(GiX) ≤ 1, X � 0, i = 1, 2, ..., r.

Using bisection, we can solve the SDP relaxation in polynomial time
yielding an optimalX∗ � 0 and a μ∗ satisfying

tr(RX
∗) = μ∗( tr(QX

∗) + σ2
n). (16)

Clearly, μ∗ is an upper bound for the optimal value of (14). Now
consider the nonconvex quadratic optimization problem

max
w

w
H
Rw − μ∗(wH

Qw + σ2
n) (17)

subject to w
H
Giw ≤ 1, i = 1, 2, ..., r.

Its SDP relaxation can be written as

max
w

tr(RX) − μ∗( tr(QX) + σ2
n) (18)

subject to tr(GiX) ≤ 1, X � 0, i = 1, 2, ..., r.

By the definition of μ∗, it follows that X∗ � 0 is a global optimal
solution for (18). Let us sample from the complex Gaussian distribu-
tionN (0,X∗). By the result of [10], we can generate in randomized
polynomial time an approximate solution ŵ satisfying

ŵ
H
Rŵ − μ∗ŵH

Qŵ ≥ c( tr(RX
∗) − μ∗ tr(QX

∗)),

where c = O((log r)−1) is a constant. In light of (16), we further
obtain

ŵ
H
Rŵ − μ∗ŵH

Qŵ ≥ cμ∗σ2
n

implying

ŵ
H
Rŵ − cμ∗ŵH

Qŵ ≥ cμ∗σ2
n + (1 − c)μ∗ŵH

Qŵ

≥ cμ∗σ2
n, (19)

where the last step follows from the positive semi-definiteness ofQ.
Rearranging the terms, we obtain

ŵHRŵ

σ2
n + ŵHQŵ

≥ cμ∗

implying that ŵ is an c-optimal solution of (14). In other words,
the SDP relaxation approach provides a c = O((log r)−1) approx-
imation to the nonconvex fractional quadratic optimization problem
(14).

4. SIMULATIONS

In our numerical examples, we consider a network with r = 20
relay nodes. The channel coefficients fi and gj are assumed to be
independent from each other for any i and j. It is also assumed that
the channel coefficient fi can be written as

fi = f̄i + f̃i

where f̄i is the mean of fi and f̃i is a zero-mean random variable.
We assume that f̃i and f̃j are independent for i �= j. For any fi,

we choose f̄i = ejθi√
1 + αf

and var(f̃i) =
αf

1 + αf
, where θi is a

uniform random variable chosen from the interval [0 2π] and αf is
a parameter which determines the level of uncertainty in the channel
coefficient fi. Note that as E{|fi|2} = 1, if αf is increased, the
variance of the random component f̃i is increased while its mean is
decreased. This, in turn, means that the level of the uncertainty in the
channel coefficient fi is increased. Similarly, we model the channel
coefficient gi as

gi = ḡi + g̃i

where ḡi is the mean of gi and g̃i is a zero-mean random variable.
We assume that g̃i and g̃j are independent for i �= j. For any gi,

we choose ḡi = ejφi√
1 + αg

and var(g̃i) =
αg

1 + αg
, where φi is a

uniform random variable chosen from the interval [0 2π] and αg is
a parameter which determines the level of uncertainty in the channel
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Fig. 1. Maximum achievable SNR versus the transmit power PT for
different values of αg and for αf = -5 dB.

coefficient gi. Based on this channel modeling, we can write the
(i, j) entry of the matricesR andQ, respectively, as

[R]i,j = P0(f̄if̄
∗
j +

αf

1 + αf

δij)(ḡiḡ
∗
j +

αg

1 + αg

δij)

[Q]
i,j

= σ2
ν(ḡiḡ

∗
j +

αg

1 + αg

δij)

where δij is the Kronecker function. Also, throughout our numer-
ical examples, the transmit power P0 is assumed to be the same
as receiver noise power. We assume that the relay nodes are di-
vided into two groups. The relay nodes in each group have the same
maximum allowable transmit power, while the maximum allowable
transmit power of one group is twice that of the other group, that is,
P1 = P2 = · · · = P10 = 2P11 = 2P12 = · · · = 2P20. We use our
SDP based technique to obtain the optimum value for matrixX, say
Xopt. In our intensive simulation examples, we have observed that
the matrix Xopt is rank one, and therefore, no randomization tech-
nique is required. As a result, the optimum value for the vector w
is the same as the principal eigenvector ofXopt. Figure 1 shows the
maximum achievable SNRs, when the individual relay nodes have
the aforementioned power constraints, versus the total relay transmit
power PT /σ2

n =
∑r

i=1
Pi/σ2

n, for αf = −5 dB and for different
values of αg . Figure 2 illustrates the maximum achievable SNRs
versus PT for αg = −5 dB and for different values of αf . As
can be seen from Figures 1 and 2, for any given PT , the maximum
achievable SNR of our SDP based technique is decreased when the
uncertainty in fi (or in gi) coefficients is increased.

It is also interesting to observe that for αf = −5 dB, the per-
formance gap between the case when the channel coefficients gi are
(almost) perfectly known (i.e., αg = −20 dB) and the cases when
these coefficients have significant variances (i.e., αg ≥ −10 dB) is
increased as PT /σ2

n is increased. However, for αg = −5 dB, the
performance gap between the case when the channel coefficients fi

are (almost) perfectly known (i.e., αf = −20 dB) and the cases
when these coefficients have significant variances (i.e., αf ≥ −10
dB) seems not to change significantly over the range of PT /σ2

n.
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Fig. 2. Maximum achievable SNR versus the transmit power PT for
different values of αf and for αg = -5 dB.
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