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ABSTRACT

The bandwidth performance of a two-element linearly constrained
minimum variance beamformer with sensor delay-lines (SDLs) at-
tached is studied in terms of the directions of the interference sig-
nals, the inter-spacing between delay-line sensors and the length
of the SDL. Compared with broadband beamformers with tapped
delay-lines (TDLs), the SDL-based structure performs better in two
ways: its output SINR drops less as the inter-delay within delay-
lines increases and with the same number of delays and weights it
can achieve a better performance than the TDL one.
Index Terms: Adaptive systems, array signal processing, delay lines

1. INTRODUCTION

Tapped delay-lines (TDLs) (or FIR/IIR filters in its discrete form) are
often employed to improve the bandwidth performance of an adap-
tive beamformer [1, 2, 3, 4], where the length of the TDL, J , is
dependent on the bandwidth of the impinging signals and the larger
the bandwidth the more delay-line taps are required [5, 6]. The de-
lays between taps decrease due to increasing signal bandwidth and
frequency. As a result, very high speed analogue TDLs or digital
sampling circuits have to be employed for signals with very high
frequency and bandwidth.

As a solution, a new broadband beamforming structure was pro-
posed, where the conventional TDLs are replaced by sensor delay-
lines (SDLs) and correspondingly the required wired delays between
taps in conventional broadband beamforming are replaced by spa-
tial propagation delays between sensors of the SDLs [7]. For the
case of a conventional broadband linear array system with TDLs,
it will change to a planar array system without TDLs, as shown in
Fig. 1. Note originally the conventional planar array system without
TDLs is used for narrowband beamforming with steering capability
in both the elevation and azimuth angles and now the structure in
Fig. 1 is used for broadband beamforming with steering capability
in the azimuth angle only, which is similar to that of the conven-
tional broadband linear array system with TDLs. Since there is only
one coefficient required for each of the received sensor signals and
no temporal processing is required, it is a broadband beamforming
system with spatial-only information.

In this paper, we will provide a detailed analysis of its bandwidth
performance as a linearly constrained minimum variance (LCMV)
beamformer [2]. In Section 2, the LCMV beamformer is briefly re-
viewed in the context of the SDL-based structure. The bandwidth
performance of a two-element beamformer is then studied as an ex-
ample in Section 3 and conclusions are drawn in Section 4.
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Fig. 1: A broadband beamformer with sensor delay-lines

2. LCMV BEAMFORMERWITH SENSOR DELAY-LINES

Consider a broadband beamformer withM original omnidirectional
array sensors and each one is followed by a SDL of J − 1 omnidi-
rectional sensors, as shown in Fig. 1. Let xm,j(t) denote the signal
received at the j-th sensor at the m-th SDL. We can then combine
signals received from all J sensors at them-th SDL into the element
signal vectorXm. Furthermore, we can use the total signal vector to
summarize all of theM element signal vectors. i.e.

Xm = [xm,0(t), xm,1(t), · · · , xm,J−1(t)]
T , (1)

X =
h
XT

0 XT
1 · · · XT

M−1

iT

. (2)

Each sensor has a corresponding weight wm,j . Then we have the
corresponding element weight vector Wm and total weight vector
W , as given by

Wm = [wm,0, wm,1, · · · , wm,J−1]
T , (3)

W =
h
W T

0 W T
1 · · · W T

M−1

iT

. (4)

The LCMV beamformer [2] applies linear constraints on the
beamformer weights so that signals from desired directions can pass
with specified gain while contributions to the output variance (or
power) due to interferences from directions other than desired ones
are minimized,

min
W

W HΦxW subject to CHW = f, (5)

26011-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



where {.}H denotes the Hermitian transpose, Φx is the signal corre-
lation matrix (MJ×MJ), C is the constraint matrix (MJ×J) and
f is the response vector (J×1). The solution to (5) can be computed
using Lagrange multipliers [2],

Wopt = Φ−1
x C(CHΦ−1

x C)−1f. (6)

We assume that the received signal at each sensor consists of
three uncorrelated components: desired signal d(t) from θd, interfer-
ence signal i(t) from θi and noise n(t). Then the signal correlation
matrix Φx can be decomposed into three matrices corresponding to
the desired signal, interference and noise components, respectively.
i.e.

Φx = Φd + Φi + Φn. (7)
Assume d(t) has a flat power spectral density of 2πpd/Δωd and a
limited bandwidth Δωd centered at ωo, the correlation function of
the desired signal is then given by [4],

Rd(τ ) = pdsinc
„

Δωdτ

2

«
eiω0τ , (8)

where τ is the delay. Let Te be the unit propagation delay between
adjacent array elements and Ts be the unit propagation delay be-
tween adjacent delay-line sensors, the correlation of the desired sig-
nal at the (m, j)-th and the (n, k)-th sensor is then

[Φdm,n ]j,k = Rd[(m− n)Te + (j − k)Ts]. (9)

To avoid spatial aliasing the adjacent original array sensors (sensor
(m,0) and sensor (m+1,0)) are set to be half a wavelength apart at
the maximum signal frequency ωmax [3],

Te =
L

c
sin(θd) =

π

ωmax

sin(θd), (10)

where θd is the direction of arrival (DOA) of the desired signal. The
adjacent delay-line sensors are set to be r times a quarter wavelength
apart at ωmax,

Ts =
D

c
cos(θd) =

π

2ωmax

r cos(θd). (11)

Substituting (8) (10) and (11) into (9) we now have

[Φdm,n ]j,k = pdsinc
j

Δωd

2
[(m− n)Te + (j − k)Ts]

ff

eiωo[(m−n)Te+(j−k)Ts]. (12)

By replacing the absolute bandwidth and center frequency with their
relative counterparts Bd = Δωd/ωmax and Ωo = ωo/ωmax re-
spectively, (12) becomes

[Φdm,n ]j,k = pdsinc
j

Bd

2
τd

ff
eiΩoτd , (13)

where the delay τd is given by

τd = π[(m− n) sin(θd) + (j − k)
r

2
cos(θd)]. (14)

Φi can be determined in the same way by assuming i(t) has a similar
flat power spectral density as d(t). As each sensor in the beamformer
is an independent analog device, the noise signals are uncorrelated

with each other. Φn is then a diagonal matrix with noise power σ2

lying on the diagonal elements, i.e σ2I .
In the following study, we will assume θd = 0. In this case, the

constraint matrixC can be expressed as a combination ofM identity
matrices IJ (J × J) [2],

C = [IJ · · · IJ ]| {z }
M

T , (15)

and f will be a vector with only one non-zero element, which is 1
for a distortion-less response to the desired signal,

f = [0 · · · 1 · · · 0]| {z }
J

T . (16)

The beamformer’s output power is given by

P = E [‖y(t)‖2] = W HΦxW. (17)

With the optimized array weights, output powers due to the three
signal components defined above now can be found as,

Pd = W H
optΦdWopt (18)

Pi = W H
optΦiWopt (19)

Pn = σ2W H
optWopt . (20)

Finally, the output signal to interference plus noise ratio (SINR) is

SINR = Pd/(Pi + Pn). (21)

3. BANDWIDTH PERFORMANCE OF A TWO-ELEMENT
BEAMFORMERWITH SENSOR DELAY-LINES

To examine the bandwidth performance of the proposed SDL struc-
ture we now consider a simple two-element LCMV beamformer re-
ceiving a desired signal from θd = 0 and an arbitrary interference
from θi. Both the desired signal and the interference have the same
bandwidth and center frequency ωo. Moreover, the input SIR and
SNR are assumed to be −20dB and 20dB respectively.

Equation (11) indicates that the SDL introduces an FIR filter
with a sampling period essentially depending on the DOA of the
impinging signals for a given r. To understand the effect of θi on
the bandwidth performance we shall examine the transfer function
of a two-element beamformer fed with the interference only. The
transfer function of them-th SDL with J − 1 delay-line sensors is

Hm(ω) = wm,0+wm,1e
−iωTs +· · ·+wm,J−1e

−i(J−1)ωTs , (22)

and the transfer function for the whole two-element beamformer is

H(ω) = H0(ω) + H1(ω)e−iωTe , (23)

where Te and Ts are defined in (10) and (11) respectively but with
θd being replaced by θi. In order to null the interference completely
H(ω)must be zero over the whole signal bandwidth,

H0(ω) = −H1(ω)e−iωTe . (24)

To meet (24) we must ensure that H0(ω) and H1(ω) have the iden-
tical amplitude response and a phase shift varying linearly with fre-
quency over the signal bandwidth, i.e.

‖H0(ω)‖ = ‖H1(ω)‖ , (25)
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Fig. 2: Output SINR versus θi for a narrowband beamformer: M = 2, J = 1
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Fig. 3: Output SINR versus θi for the SDL-based structure:
M = 2, J = 2, r = 1

∠H0(ω) = ∠H1(ω)− π − ωTe. (26)
In a narrowband beamformer (J = 1) there is no delay line

sensors attached and (24) becomes

w0,0 = −w1,0e
−iωTs , (27)

which can only be satisfied at a single frequency (B = 0). As shown
in Fig. 2, larger bandwidth rapidly worsens the output SINR. In
contrast, with one single delay-line sensor (J = 2) attached to each
original array sensor, Hm(ω) is then

Hm(ω) = wm,0 + wm,1e
−iωTs . (28)

The extra e−iωTs term allows H0(ω) and H1(ω) to meet (24) over
the signal bandwidth which yields a better bandwidth performance.
As shown in Fig. 3 with one delay-line sensor being a quarter wave-
length apart (r = 1) attached to each original array sensor the output
SINR improves significantly.

Now let’s consider the effect of the delay between delay-line
sensors (or r) on the performance. In principle, to cancel the inter-
ferenceH0(ω) andH1(ω)must meet (24) over the signal bandwidth
regardless of r. HoweverHm(ω) is a periodic function with a period
depending on both r and θi,

Ω =
2π

Ts

=
4ωmax

r cos(θi)
. (29)

With the cos(θi) term the periodΩ is limited from 4ωmax/r to+∞.
For large r values the lower bound ofΩ is much smaller than the sig-
nal bandwidth. But lower bound will increase as r decreases and it
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Fig. 4: Output SINR versus r for the SDL-based structure:
M = 2, J = 2, θi = 30o

will finally equal to the signal bandwidth when r = 4/(B cos(θi)).
If r is small enough and 4ωmax/r is large, then Ω will always be
much larger than the signal bandwidth. Therefore the phase shift
∠H0(ω) − ∠H1(ω) can be linear. As r increases the lower bound
of Ω approaches the signal bandwidth and it gets more difficult for
H0(ω) and H1(ω) to satisfy (24) within the signal bandwidth and
the beamformer performance drops. When r exceeds its critical
value 4/(B cos(θi)), 4ωmax/r eventually drops below the signal
bandwidth and ∠H0(ω) − ∠H1(ω) may repeat periodically within
the signal bandwidth (depending on the value of θi) therefore (24)
cannot be met any more. At this point there will be little change to
a poor bandwidth performance with large r. Above discussions are
illustrated in Fig. 4.

Moreover, in the study of SINR versus the DOA of the inter-
ferences (Fig. 5) it is found that as θi increases the SINR tends to
rise at first but then falls rapidly when θi is very close to 90o re-
gardless of r values. These can be understood when we consider the
delay τi. From (11) it is clear that as θi → 90o Ts approaches 0
and the attached SDL fails to null the broadband interference. On
the contrary, Te in (10) increases significantly regardless of r as Ts

decreases. Thus τi and equivalently the correlation of the interfer-
ence within the whole beamformer is restored and the beamformer
is still able to cancel the interference even without the help of SDL
at large θi values. However once θi gets very close to 90o the beam-
former seen by the interference becomes a narrowband one and the
constraints on weights now must be taken into account. With C and
f , weights are chosen to ensure that only signals from the broadside
with no delay can pass through the beamformer with a unit response
(f0 = 1) while all the others will be attenuated, i.e.(

w0,0 + w1,0 = 1

w0,1 + w1,1 = 0
. (30)

When the broadband beamformer seen by the interference approxi-
mates a narrowband one as θi → 90o, each weight of the equivalent
narrowband beamformer is the sum of weights in the corresponding
delay line, (

w0 = w0,0 + w0,1

w1 = w1,0 + w1,1
. (31)

Since they must follow the constraint on optimal weights selection,
we have

w0 + w1 = 1. (32)
Therefore the performance drops to the level of the corresponding
narrowband LCMV beamformer.
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Fig. 5: Output SINR versus θi for the SDL-based structure:
M = 2, J = 2, B = 0.2, r ∈ (5, 80)

We shall now examine the effect of adding extra delay-line sen-
sors on the bandwidth performance. A signal with non-zero band-
width can remain correlated with itself for a time shift up to 1/B in
the TDL system [4]. We can apply this result to our SDL case and
expect that adding delay-line sensors will be effective only if Ts is
short compared to 1/B. If Ts is too large due to large r values the
interference fails to remain correlated within the delay-line and the
beamformer is unable to cancel it further in spite of the extra number
of delay-line sensors added.

As shown in Fig. 6, for very large values of r, there is almost
no any improvement when extra delay-line sensors are added. The
only region that the additional delay-line sensor can improve the
beamformer performance effectively is r < 4/(B cos(θi)). Within
this range the lower bound of Ω is larger than the signal bandwidth.
Adding extra delay-line sensors introduces more free terms which
leads to a more linear phase shift and a better ability of nulling inter-
ference. However the SINR can only be improved significantly with
the first few sensors added. Once it reaches a certain level the effect
of extra sensors can be ignored.

As a comparison, the change of the output SINR with respect
to the number of delay-line taps in the TDL system are shown in
Fig. 7. Note in the TDL case r stands for the number of a quarter
wavelength delay measured at ωmax. By comparing SINR results
from both the TDL and SDL structures, we can conclude that the
later one performs better in two aspects. Firstly, as r, or the unit
delay within a delay-line, increases, the output SINR of the SDL
beamformer drops less than the TDL one. Secondly, with the same
number of delays and weights the SDL beamformer generally can
achieve a better optimal SINR output than the TDL one.

4. CONCLUSION

A detailed analysis of the bandwidth performance of a LCMV broad-
band beamforming structure with SDL processing has been provided
in terms of the DOA of the interference signals, the inter-spacing be-
tween delay-line sensors and the length of the SDLs. Compared with
the TDL-based beamformer, the SDL-based beamforming structure
performs better in two main aspects: its output SINR drops less as
the inter-delay within the SDLs increases and a better output SINR
can be archived using the same number of delay-line sensors and
weights as the TDL one.
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Fig. 6: Output SINR versus J for the SDL-based structure:
M = 2, θi = 30o, B = 0.2, r ∈ (3, 80)
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