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ABSTRACT 

Space-time adaptive processing (STAP) in complex radar 
propagation and inhomogeneous clutter environments is 
often precluded because neither the target wavefront is 
sufficiently known nor is signal-free training data available. 
In recent work, wavefront adaptive sensing (WAS) was 
proposed to overcome these challenges by combining 
minimum variance (MV) adaptive processing and blind 
source separation (BSS) for distributed sources. In this 
paper, WAS is compared with conventional BSS and MV 
processing both analytically and via simulation.   In an over-
the-horizon radar (OTHR) spread-Doppler clutter 
environment, WAS is shown to avoid MV signal 
cancellation at high SNR and poor BSS threshold 
performance at low SNR.  

Index Terms — Adaptive signal processing, Array 
signal processing, HF radar, Radar clutter, Ionospheric 
electromagnetic propagation. 

1. INTRODUCTION 

    Spatially inhomogeneous and Doppler-spread clutter 
compromises target detection performance of radar systems. 
Classical space-time adaptive processing (STAP) methods 
achieve clutter suppression by estimating a clutter-plus-
noise covariance matrix from “signal-free” training data. 
Signal-free snapshots are typically obtained by using data 
from range bins which are identically distributed but well 
separated from the hypothesized target range bin “under 
test”. In highly inhomogeneous environments, such as HF 
over-the-horizon radar (OTHR), the clutter statistics change 
significantly across neighboring range bins [1,2]. An 
alternative approach is to estimate the signal-plus-clutter-
plus-noise covariance matrix at the range bin under test and 
employ minimum variance distortionless response (MVDR) 
adaptive beamforming [3,4].  
   This paper addresses a signal wavefront mismatch 
scenario, where blind source separation (BSS) [5] and a new 
hybrid approach, called wavefront adaptive sensing (WAS) 
were compared to the conventional MVDR. The proposed 
WAS uses BSS to estimate the strong clutter wavefronts and 

utilizes a conventional, possibly mismatched, steering 
vector for the target. The idea behind WAS is to use BSS 
only on strong components in the data, i.e. the clutter. The 
novelty of WAS is that BSS is used to estimate the 
wavefronts of strong spatially distributed clutter while 
conventional steering vectors model the usually much 
weaker point target returns. Simulations show that WAS 
outperforms MVDR in mismatched scenarios.

2. STAP MODELING FOR OTH RADAR 

Multipath OTHR clutter that arises due to propagation in 
ionosphere is modeled in this section. Consider a uniformly-
spaced linear array (ULA) antenna with N, d-spaced
elements. Let 1,..., MX x x  be the space-time snapshot of 
size N M , sampled at the particular range gate, where 

, 1, ,m m Mx is a spatial snapshot at mth sample. Using 
the STAP notation, define the space-time snapshot: 

vec X  of size 1NM  which contains noise, clutter, 
and possibly a target. The radar echo from a point scatterer, 
such as a target, with amplitude , elevation angle , and 
bearing angle ,  can be expressed as:  

, ,b a  (1) 

where  stands for Kronecker product, 
, 1, ...dj m

mb e m Mb  is temporal steering 

vector with Doppler angular frequency 2d d rf T , where 

df  is Doppler frequency and rT  is pulse repetition interval 

(PRI), and , , , 1, ... ,jkn

na e n Na  is spatial 
steering vector with wave-number frequency 

0

2 cos sind
tk ,  and wavelength 0 . The noise  n

is assumed spatially and temporally white with covariance 
matrix: 2 ,T

n n n nER I  where I is an identity matrix. 
At HF frequencies, assuming no ionospheric Doppler 

modulation, the sea clutter patch from azimuth angle 
, 1, ...,i i I , and elevation angle , 1, ...,j j J  with a 
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Doppler spectrum consisting of multiple Bragg lines can be 
expressed as: 

( , ) ( , ),c i j ij i jH a (2)

where  1, ..., , 1, ...,ij i I j J  are zero-mean complex 
Gaussian-distributed random variables with 

( , )c

ij N 0 I , and H  contains coefficients of the 
Bragg-line sea clutter spectrum which is constant over all 
azimuth and elevation angles. The ionospheric modulation 
of each clutter patch is modeled here as a complex zero-
mean  Gaussian-distributed modulation function that in 
general can vary across elevation (or mode) and azimuth, 
i.e. ( , )c

ij ijN 0 . The received modulated radar echo 
from a sea clutter patch is then: 

( , ) ( , ),c i j ij ij i jH a  (3) 

where  stands for Hadamard product which has 
covariance matrix: 

( , ) ( , ) ( , )c i j c i j ij ij i jCov CovR H a

( , ) ( , ) .H H

ij i j i jH H a a  (4) 

   The entire radar sea clutter return is then obtained by 
summing over all modes (elevations) and azimuths. STAP is 
most effective the ionospheric modulation is constant over 
azimuth i.e.  1, , .ij j i I   Physically, this treats 
the ionosphere as a vertically layered medium where 
different raymodes are subject to Doppler shifts which are 
constant across a bearing sector at least as wide as the 
transmit mainlobe.  In this case, (4) becomes: 

( , ) ,c c i j j j
ij j

R R P                      (5) 

where
j

H

jH H  is the Doppler-spread 
temporal covariance for the jth mode and  

( , ) ( , )H

j i j i j
i

P a a .

 3. WAVEFRONT ADAPTIVE SENSING 
 
   The key idea of WAS is to obtain spatial covariance 
matrix without requirements for signal-free data, by 
separating clutter and signal wavefronts using BSS methods 
which exploit their different Doppler characteristics. Among 
its several features, WAS extends blind source separation 
(BSS) techniques to the separation of distributed sources
(i.e. clutter) from point targets of interest.
   A STAP clutter space-time snapshot realization from the 
covariance of Eq. (5) can be expressed as j j

j

p ,

where
j

and
jp are respectively temporal and spatial 

vectors, generated from the zero-mean circular complex 
Gaussian distributions with covariance matrices ,j jP ,
respectively. Alternatively, the space-time snapshot can be 
represented as 

j

H

j
j

X p , where vec X or in a 

matrix form as:             
,X AS (6)

where columns of 1 JA p p  are the beam-space 
wavefronts corresponding to each raymode and the rows of  

1 J

TH HS are the corresponding Doppler 
coefficients.  The formulation of (6), wherein A and S are 
jointly estimated, fits neatly within the framework of BSS 
methods.   
   Consider, without loss of generality that the first source is 
a target: [  ]Hts c , therefore the structure of the mixing 
matrix is: t c nA a A . The target wavefront can be 

obtained by: t ta Ae , where [1,0,...,0]H
te . Consider 

block-diagonal structure of spatial covariance matrix of 

independent sources: 
2

H

H
tES

c

SS
0

0
, where 

2
t  is a target power and HEc cc  is clutter 

covariance matrix. The spatial input covariance matrix is: 
,H H

t t t tx s c+nR a e e a R (7)                           
where clutter plus noise covariance matrix is 

2H
nc+n c+n c c+nR A A I .                           (8) 

Assume that the target wavefront is normalized such 
that: H

t t Na a , therefore, the input SNR is: 

2 2

2 22
2 2

1

,
H H

t t t t t t
in NH

i nn
i n

n

trace N
SNR

trace N

s

c+n c c+n

a e e a

A A I

where 2 2

1

N

i i
n

is average power of interference signal. 

The array output is Hz w x , with covariance matrix: 
2H H H H H H

t t t t nz s c+n c c+nR w a e e a w w A A w w w    (9) 
   Widely used criterion for adaptive beamformer 
performance evaluation is array gain:  

2

2

H H H H
t t t t n

H H H H H
n t t t t

out

in

SNR
G

SNR
s c+n c c+n

c+n c c+n s

w a e e a w A A I
w A A w w w a e e a (10)

Array gain of various beamformers varies with selection of 
weight vector. The weight vector of the well-known optimal 
beamformer is given by [3]: 1

opt ,c n tw R a where ta  is 
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target steering vector in target direction t . In the absence 
of signal-free training data, the sample covariance matrix of 
the test data may be used with an additional constraint to 
avoid signal cancellation to form the adaptive MVDR 
beamformer weight estimate: 

1

MVDR 1

ˆ
ˆ ,ˆ

t

H

t t

x

x

R a
w

a R a
                               (11) 

where
1ˆ .H

MxR XX  The array gain of the MVDR is:  

2 2 1( ) H
MVDR i n t tG xa R a  (12) 

   The main idea of a BSS beamformer is to exploit the 
temporal differences between the multipath clutter modes 
and target to estimate clutter wavefronts in c nA , and signal 
wavefront in ta .  In particular, considering data in the form 
of (6) suggests a whole host of blind source separation 
methods can be employed to determine A from X based 
solely on the temporal properties of S. With a well 
estimated A, separation of the target from Doppler spread 
multimode clutter can be relatively easily accomplished. In 
this work, the algebraic second-order BSS method, 
implemented via the well-known SOBI algorithm that 
exploits differences in sources spectra, is adopted [5-6]. At 
the output of the algorithm the estimated mixing matrix Â ,
whose columns contain wavefronts of separated clutter 
modes, is obtained. In the BSS framework, the standard 
approach is to form:  

1ˆ ,S A X                       (13) 
which in the radar problem considered here gives an 
estimate of the Doppler spectra of the target and clutter 
modes in the rows of S. In terms of beamforming on the 
target, therefore, the weight vector of the BSS beamformer 
is just: 

1ˆ .H

BSS tw A e               (14) 
   Note that this beamformer implicitly assumes that the 
location of target column of 1Â  can be determined. In the 
OTHR application, this knowledge can be obtained using 
the point-like spatial and single Doppler frequency temporal 
characteristic of the point-target versus the distributed 
spatial and Bragg-line Doppler features of the separated 
clutter modes.  
Using (14) in (8), the output covariance matrix is:  

11

1 11 2 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ .

H H H H H
t t t t t t

H H H H H
t t n t t

z s

c+n c c+n

R e A Ae e e e A A e

e A A A A e e A A e
  (15)

Exploiting mixing matrix structure: t c nA a A , obtain: 
1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ

t tc+n c+nI A A A a A A a A A . Note 

that  1ˆ
tA a  is a vector, then by construction:  

1ˆ 1
HH

tA a 0 , 1ˆ ˆ H
c+nA A 0 I , leading to: 

1ˆ ˆH H
t c+ne A A 0 . Using last expressions, (15) can e 

rewritten as: 
12 1ˆ ˆH H H

t t n t tz sR e e e A A e                  (16) 

Note that H H
te J 0 , means that the BSS beamformer nulls 

out interferences at the output of the beamformer: 
22 2 1ˆH

t n tzR e A , providing following output SNR: 
2

22 1ˆ
BSS t
out H

n t

SNR
e A

                           (17)

Finally, array gain for BSS beamformer is:  
2 2 2 2 2

2 222 1 2 1ˆ ˆ
t i n i n

BSS
H Htn t n t

G
e A e A

    (18) 

   This analysis shows that assuming accurate estimate of A, 
the BSS completely mitigates the clutter. The drawback of 
the BSS beamformer is that its performance degrade 
dramatically when source separation is imposible.  
   The WAS consists of forming a signal-free covariance 
matrix using the BSS-estimated ˆ

c nA and forming an 

estimate of c  in (8), using the following expression:  

† 2 †ˆ ˆˆ ,
H

WAS c n n c ndiag XA R I A            (19) 

where
1†ˆ ˆ ˆ ˆH H

c n c n c n c nA A A A  is the Moore-Penrose 

pseudoinverse, and ( )diag  denotes the diagonal matrix of 
the argument. Using expression (8) in (19), we obtain: 

2ˆ
WAS c t D                                        (20) 

where † †ˆ ˆ HH
t tdiag c n c nA AD a a . Finally the WAS 

estimator of the spatial covariance matrix is:     
2 2ˆ ˆ ˆ ˆˆ ˆ .H H

WAS n

WAS
tc n c n c n c nc n c nR A A I A AR D     (21) 

This means, the WAS approximate the true signal-plus-
noise covariance matrix based on the clutter wavefronts, 
obtained by BSS. Expected advantageous performance of 
the WAS is motivated by requirement to estimate strong 
interferences only, and not weak target signal.  
The resulting WAS beamformer with modeled signal 
wavefront can be obtained by using  

WAS

1ˆ .t

WAS
c nw R a                               (22) 

The array gain of the WAS beamformer is further compared 
to the BSS and the MVDR via simulations. Note that 
although the WAS beamformer of (22) uses a modeled 
signal wavefront, unlike conventional MVDR, the 
covariance matrix employed is nominally signal-free due to 
the use of clutter wavefronts estimated via BSS.   
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4. SIMULATION RESULTS 

In this section, the WAS method is compared with BSS and 
conventional adaptive beamforming in terms of array gain 
in a simulated multi-mode OTH HF radar environment. 
Simulations were conducted for a uniform half-wavelength-
spaced linear array of 100 elements. A radar echo with 
carrier frequency of 25 MHzcf  and pulse repetition 
frequency (PRF) of 5Hz  were used such that the Bragg line 
Doppler components of the sea clutter return would be 
at 0.1  (MHz) 0.5 Hzb cf f  without ionospheric 
motion.  To simulate ionospherically-induced Doppler, an 
additional 0.5 Hz frequency shift was introduced between 
two sets of Bragg lines corresponding to multipath 
propagation of clutter returns via two different layers.  A 
total of 128 array snapshots are used to estimate the 
beamformer weights for the WAS, BSS, and MVDR 
methods. 

Fig. 1 illustrates the array pattern for the target beam and 
a horizontal wavenumber-Doppler power spectrum at the 
target receive beam.  The clutter-to-noise-ratio (CNR) is 40
dB and SCNR is -10 dB (SNR of 30 dB). This figure shows 
that the BSS beamformer has an array pattern peak nearer 
the correct direction of the target arrival. It also shows that 
the WAS using the estimated clutter wavefront vectors for 
covariance matrix estimation and BSS beamformers 
outperform the MVDR. 
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Fig 1. Array patterns and Doppler spectra at the target beam. 
The array gain loss as a function of the input SNR is 

shown in Fig. 2 large ( 0.65o ) and small ( 0.22o ) steering 
angle mismatch. Note that the WAS method achieves nearly 
the greater of the BSS and MVDR methods over the entire 
SNR range.  WAS avoids the signal cancellation due to 
mismatch at higher SNR because it uses the estimated 
clutter wavefronts in the clutter plus noise covariance 
matrix.  At lower SNR, WAS avoids the problem of poor 
estimation of the signal wavefront in BSS because it uses 

the assumed steering vector of MVDR.  As seen in the 
results for larger mismatch, WAS underperforms BSS but 
this is often a desirable trade-off to avoid the sudden 
performance degradation of BSS due to signal wavefront 
estimation error at a lower SNR.  

5. CONCLUSION 

WAS is a hybrid adaptive beamforming approach which 
avoids MVDR signal cancellation due to mismatch at high 
SNR and the deleterious effects of BSS threshold effects of 
low SNR. Applications include OTHR clutter mitigation. 

This work was supported by ONR Code 313 and the Radar 
Division of the Naval Research Laboratory, Washington, 
DC.
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Fig 2. Array gain loss for large and low mismatch. 
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