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ABSTRACT

In this paper, we present a data association algorithm for peo-

ple tracking in a 3D world using multiple cameras. Our ap-

proach expands an independent partitioned particle filter with

a data association vector. For the association parameter, we

propose a proposal function using likelihood functions based

on color and distance. This proposed algorithm solves the

data association problem without dramatically increasing the

computational complexity even in the case of trajectories that

cross.

Index Terms— Particle filter, data association, visual track-

ing, IPPF, proposal function

1. INTRODUCTION

A data association problem for unlabeled measurements al-

ways presents in single or multi-target tracking. In multi-

target tracking, there is inevitable ambiguity even in the ab-

sence of clutter. Clutter complicates the problem considerably

because we also have to deal with the problem of missing data

and false alarms.

While some researches [1, 2] assume that measurements

for each target are already known, others try to solve the data

association problem with unlabeled measurements [3,4]. The

most popular approaches are a multiple hypothesis filter (MHT)

and a joint probability data association filter(JPDAF) [3]. The

MHT approach attempts to advance all possible association

hypotheses including new targets, through a measurement-to-

target association, but this approach suffers from the com-

plexity caused by the increasing number of possible associa-

tion hypotheses with time. Since JPDAF, on the other hand,

associates targets to measurements, it cannot deal with new

targets, but it does generate a more feasible number of hy-

potheses. The final decision regarding which method is more

applicable to a specific application depends mainly on the

numbers of new targets, false alarms, etc.

Recently, a particle filter [1,2] has been popular for target

tracking because of its non-linear and non-Gaussian structure,

but this particle filter also cannot inherently solve the data

association problem. Moreover, in multiple target tracking,

a standard particle filter also suffers because of the increased

size of a target space of multiple targets. When this particle

filter with a large state space has to perform data association,

it requires so many particles to maintain the tracking that it

cannot perform real-time tracking.

Our approach implements data association using particle

filter, but to overcome the curse of dimensionality, we use in-

dependent partitioned particle filter proposed by Orton [5]. To

perform the data association, we use target-to-measurement

association similar JPDAF, but allow it to share one measure-

ment among multiple targets based on the assumption that

data association is independent among targets. In addition,

we propose a proposal function for the data association pa-

rameter that uses a color-based data likelihood in addition to a

distance-based data likelihood to prevent performance degra-

dation when targets cross.

2. BASIC PARTICLE FILTER FRAMEWORK

A particle filter is a method to implement a sequential Bayesian

estimation. The Bayesian estimation [2] is to do a statistical

inference using probabilistic models. In this Bayesian infer-

ence, all variables are treated as random variables. It assumes

that the true states are hidden. Then it estimates a posterior

probability given measurements and prior information. The

particle filter estimates the posterior probability using discrete

samples called particles. This estimation occurs in time do-

main through target dynamics and a data likelihood.

2.1. Target dynamics and data likelihood

The target state of interest consists of 3D locations of people

in a conference room. During the conference, people are as-

sumed to sit on chairs without constant motion to a specific

direction. Thus we define the target state and target dynamics

as a random walk with Gaussian noise as follows:

Xt = [x1,t, . . . ,xk,t, . . . ,xK,t] (1)

p(Xt|Xt−1) ∼ N (Xt|Xt−1, Σ) (2)

where xk,t = [xk,t, yk,t, zk,t]T is the position of target k at

time t, and K is the number of people in the room. Σ is

chosen to cover possible movement of people.

For the data likelihood model, our measurements are de-

fined as the locations of the centers of faces. We denote a

measurement vector as Yt, consisting of all face candidates
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from Mo cameras at time t. Then Yt can be written as a ma-

trix as
Yt = [y1

t , . . . ,yi
t, . . . ,y

Mo
t ]. (3)

Here, the measurements from camera i are yi
t = [y1

t , . . . , yMi

t ]T

= [(u1
t , v

1
t ), . . . , (uMi

t , vMi

t )]T , and M i is the number of mea-

surements from camera i.
Then the data likelihood function, p(Yt|Xt), is formed

from a multivariate Gaussian density as

p(Yt|Xt) ∝ exp

(
− 1

2

[
Yt−Ŷt(Xt,P)

]T
Σ−1

[
Yt−Ŷt(Xt,P)

])
where Ŷt(Xt,P) is a matrix of hypothesized measurements

calculated with particles and camera calibration matrices, P.

The relationship between a point in 3D world coordinates,

x = (x, y, z)T , and its corresponding 2D image coordinates,

yi = (ui, vi)T , is described using the camera calibration ma-

trix of the camera i, pi, as yi = kpix.

3. PARTICLE FILTER WITH DATA ASSOCIATION

The curse of dimensionality using a standard particle filter for

multiple target tracking is well explained by Orton [5]. One

solution is to use partitioned sampling [6]. Partitioned sam-

pling is a generic term for a strategy that divides the state

space into two or more partitions and sequentially generates

particles for each partition followed by an appropriate weighted

re-sampling operation. Orton partitioned each target of multi-

ple targets as an individual partition and implemented a weighted

re-sampling function, which he called IPPF. Our approach ex-

tends Orton’s IPPF algorithm with a data association param-

eter in order to implement a posterior probability. In this sec-

tion, we introduce an association parameter and then propose

proposal functions for the association parameter and the tar-

get state to determine how to distribute new particles, which

is the most important issue in particle filter.

3.1. Data association

To deal with the data association problem, we introduce a set

of data association parameters as done in [3, 4]. As the asso-

ciation parameter we use a target to a measurement, based on

the assumption that the number of targets has not changed, or

that a new target is detected outside of the particle filter.

We denote the target-to-measurement hypotheses for mea-

surements from Mo cameras at time t as Λ̃ = (λ̃1, . . . , λ̃Mo

),
where λ̃i

t = (r̃i,M i
C ,M i

T ) is the target-to-measurement hy-

potheses for the measurements from camera i, r̃i is an as-

sociation vector, and M i
C and M i

T are the number of clutter

measurements and target measurements. The values of M i
T

and M i
C can be extracted from r̃i. The association vector

r̃i = (r̃i
1, . . . , r̃

i
K) is given by

r̃i
k =

{
0 if target k is not detected

j ∈ {1, . . . , M i} if target k generates measurement j.

Table 1. Standard particle filter with data association

For n= 1, . . . , N ,

Generate particles for (Λ̃
(n)
t ,x

(n)
t )

∝ q(Λ̃t,Xt|X(n)
t−1,Yt) = q(Λ̃t|Xk,t, yt)q(Xt|X(n)

t−1,Yt)
For n= 1, . . . , N ,

ω
(n)
t ≈ ω

(n)
t−1

p(Λ̃
(n)
t )p(Yt|X(n)

t ,Λ̃
(n)
t )p(X

(n)
t |X(n)

t−1)

q(Λ̃
(n)
t |X(n)

t ,Yt)q(X
(n)
t ||X(n)

t−1,Yt)
�N

n=1 ω
(n)
t = 1

If re-sampling is required, for n = 1 . . . N ,

Sample an index m(n) ≈ {ω(l)
t }N

l=1 and replace

{ω(n)
t ,X

(n)
t , Λ̃

(n)
t } = {N−1, x

(m(n))
t , Λ̃

m(n)
t }

Then, Λ̃t is added into the target space of a standard par-

ticle filter. The final posterior probability, p(Xt, Λ̃t|Y1:t) is

p(Xt, Λ̃t|Y1:t) ∝p(Λ̃t)p(Yt|Xt, Λ̃t)�
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1.

(4)

The association prior, p(Λ̃t), and the conditional data likeli-

hood, p(Yt|Xt, Λ̃t), are defined in [3] as follows:

p(Λ̃t) =
Mo�
i=1

(
p(M i

c)
K�

k=1

p(r̃i
k|r̃i

1:k−1)

)
(5)

with

p(r̃i
k|r̃i

1:k−1) ∝
{

1 − PD if j = 0
PD

Mi
k

otherwise

and

p(M i
c) = (λi

c)
Mc exp(−λi

c)/M
i
c !,

M i
i = M i − |l : r̃l

i = 1, . . . , k − 1|,

p(Yt|Xt, Λ̃t) =
Mo�
i=1

(
(V i)−Mi

c

K�
k=1

pi(yi
r̃k

|xk)

)
(6)

with

pi(yi
r̃k
|xk) ∝

{
1 if r̃i

k = 0
pi

T (yi
j |xk) if r̃i

k = j ∈ {1, . . . , M i} (7)

where pi
T (yi

j,t|xt) is defined as N(yi
j |ŷi

k(xk,t),Σi
y).

The straight implementation of this particle filter in Ta-

ble 1 suffers from the curse of dimensionality and needs a

large number of particles to maintain acceptable performance.

For this reason, we, instead, use IPPF and extend it with data

association.

3.2. IPPF with data association

IPPF assumes that each target is independent. We, in addition,

assume that the data association is also independent among

the targets. In this case, one measurement can be assigned

into two targets with a probability. Since this can cause an

incorrect association for very closely located targets, we ex-

pand the proposal function for the association vector with a

color similarity-based data likelihood.
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Fig. 1. Black and white boxes show approximate windows.

3.2.1. Proposal function of data association

Here we define a proposal function for the data association

vector for a target k, r̃k,t, given xk,t and yi
t. Basically, the

proposal function of the data association vector depends upon

the distance between a hypothesized measurement and a real

measurement in (8) because pi
T (yi

j,t|xt) is N(yi
j |ŷi

k(xk,t),Σi
y).

This distance-based proposal function generally works well,

but accuracy is greatly degraded when the measurements from

multiple targets are close or overlapping. To deal with this

issue, we add color similarity to a proposal function for the

association vector.

q(r̃i
k,t = j|xk,t, y

i
t) = q(yi

t|r̃i
k = j,xk,t)q(r̃i

k,t = j) (8)

with

q(yi
t|r̃i

k = j,xk) =

{
V −Mi

, if j = 0
V −(Mi−1)PT (yi

j,t|xk,t) if j ∈ {1 . . . M i}

q(r̃i
k,t = j) =

{
1 − PD, if j = 0
PD

K if j ∈ {1 . . .M i}.

This color similarity is calculated using a Bhattacharyya

coefficient [7] from the approximate upper-body areas from

each measurement yi
t at camera i and the current target state,

x(n)
k,t . However, since calculating histograms for all particles

is relatively expensive, we calculate a histogram from xk,t−1

instead of x(n)
k,t .

d(h1(yi
t), h2(ŷ(xk,t−1,pi))) =

�
1 − ΣuΣv(h1(u, v)h2(u, v)) (9)

where h1(y
j
k) and h2(ŷ) are normalized color histograms of

two windows chosen to cover the upper bodies from yi
t and

ŷ(xk,t−1). In Figure 1, black boxes are from ŷ(xk,t−1) of

target k, and white boxes are from measurements. The color

similarity is calculated between a black box and a white box

using (9). The proposal function based on the color similarity

is given by

q(yi
t|r̃i

k = j,xk) ∝ exp(−d(h1(yi
t = j), h2(ŷ(xk,t−1,pi)))

2σ2
). (10)

where σ is empirically determined. Therefore, the final pro-

posal function to generate data association particles consists

of both (8) and (10).

Table 2. IPPF with data association
For k = 1 . . . K, n = 1 . . . N ,

Generate particles for target states

x
(n)
k,t ∝ q(x

(n)
k,t |x(n)

k,t−1,Yt)

For k = 1 . . . K, i = 1 . . . No, n = 1 . . . N ,

Generate particles for target-to-measurement association

r̃
i(n)
k,t ∝ q(r̃

i(n)
k,t |,x(n)

k,t ,yi
t)

For k = 1 . . . K, n = 1 . . . N ,

Compute and normalize individual target weights

α
(n)
k,t ∝ pk(x

(n)
k,t

|x(n)
k,t−1)

qk(x
(n)
k,t

|x(n)
k,t−1,Yt)

�No
i=1

pi(yi

r̃
i(n)
k,t

|x(n)
k,t

)p(r̃
i(n)
k,t

)

q(r̃
i(n)
k,t

|x(n)
k,t

,yi
t)

α
(n)
k,t =

�N
n=1 α

(n)
k,t = 1

Sample an index mk(n) ∝ {α(l)
k,t}N

l=1 and replace

{x(n)
k,t , {r̃i(n)

k,t }No
i=1} ← {xmk(n)

k,t , {r̃imk(n)
k,t }}

For n = 1 . . . N , Compute and normalize particle weights

ω
(n)
t ≈ ω

(n)
t−1

p(Λ̃
(n)
t )p(Yt|X(n)

t ,Λ̃
(n)
t )p(X

(n)
t |X(n)

t−1)

q(Λ̃
(n)
t |X(n)

t ,Yt)q(X
(n)
t |X(n)

t−1,Yt)

If re-sampling is required, sample an index m(n) ∝ {ω(l)
t }N

l=1

and replace {ω(n)
t , x

(n)
t } ← {N−1, x

m(n)
t }

3.2.2. Proposal function of a target state

The optimal proposal function for a target state is its posterior

probability [2]. However, since the relationship between xk,t

and Yt is not known, we cannot derive the proposal function

of a target state without an association vector. However, if we

define it as a mixture of posteriors of all measurements and

a target, then we remove the association vector for it. After

extended with a state transition to cover the case of missing

data, the final proposal function is as follows:

qk ∝α1p(xk,t|xk,t−1)

+ (1 − α1)
M0∑
i=1

Mi∑
j=1

pT (yi
j,t|xk,t)p(xk,t|xk,t−1).

Here, the mixture coefficient, α1, is empirically determined.

This mixture of posteriors of all measurements sometimes

requires to increase the number of particles when they have

too many measurements. Then, we use a gating [3] to delete

distributions that have measurements far from the hypothe-

sized measurement.

4. SIMULATIONS

For our simulation, we equipped a conference room with four

EVI-D30 cameras. The size of the room is 5.9 m x 3.6 m x

2.4 m. All cameras are steered to cover the center of the room

as much as possible shown as Figure 2(a), but the tracking

area is still limited due to their field of view. All the cameras

were calibrated off-line. The size of the images captured from

the cameras is 320x240. One set of sample images captured

from three cameras is shown in Figure 1.
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Because of the difficulty of showing results using real

data, we show results using synthetic data generated using

real camera calibration matrices and real image size. The

parameters used here are Pd = 0.98 for the detection rate,

λc = 0.1 for the Poisson clutter process in (5), σ2 = 20 pixel

for measurement noise. All simulations are evaluated with

a mean absolute difference (MAD) between the true target

states and estimated target states with 30 repetitions of Monte

Carlo simulation. The number of particles is 100 for each tar-

get. All target states in the simulation has 3D values, but here,

we depict only the x − y coordinates.
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Fig. 2. Conference room in the x − y domain with (a) three

people, (b) measurements from three cameras. Each blue,

green, and magenta, cyan dots correspond to target 1, target

2, target 3, and false data for 50 images.

First, we applied our proposed algorithm to a scenario of

static people as shown in Figure 2(a). In this scenario, three

people sit in chairs and talk. Surprisingly, while the MAD

using two cameras is 2.7 cm, the MAD using three cameras

is 3.6 cm. This contradicts the general assumption that track-

ing performance is better when we have more sensors. How-

ever, The reason becomes clear when we see the measure-

ments from each camera in Figure 2(b). In camera 3, the

measurements of target 1 and 2 are very close. When the

measurements for two targets are too close or overlapping,

many of the association vectors of target particles for target

1 associate measurements from target 2 and vice versa. This

causes the final tracking location to go other target location.

This becomes much clearer when we run the simulation with

non-crossing moving targets and crossing moving targets.

Figure 3 shows the results of two scenarios of non-crossing

targets and crossing targets. In Figure 3(a) for non-crossing

targets, the MAD using two cameras is 6.6 cm, and the MAD

using three cameras is 3.1 cm. For the target crossing sce-

nario, however, the proposal function based on a distance

cannot associate the true data relations, so the tracking af-

ter crossing is incorrect as in Figure 3(b). However, when we

add color-similarity to the proposal function as (10), this is

prevented as shown in Figure 3(c). The Bhattacharyya coeffi-

cient, d, is 0.5 for the true association and 0.8 for the incorrect

association for the simulation of Figure 3(c).
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Fig. 3. A simulation result. (a) not-crossing targets scenario

using (8), (b) two crossing target scenario using (8), (c) two

crossing target scenario using (8) and (10).

5. CONCLUSIONS

In this paper, we proposed data association algorithm for a

particle filter using multiple cameras. We expanded Orton’s

IPPF with a data association vector and proposed a proposal

function for the data association parameter with color-based

data likelihood. This proposed algorithm can solve the data

association problem from unlabeled measurement for multi-

ple target tracking, without dramatically increasing computa-

tional complexity.
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