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ABSTRACT

In this paper we present an efficient method to perform acoustic
source localization and tracking using a distributed network of mi-
crophones. In this scenario, there is a trade-off between the local-
ization performance and the expense of resources: in fact, a mini-
mization of the localization error would require to use as many sen-
sors as possible; at the same time, as the number of microphones
increases, the cost of the network inevitably tends to grow, while in
practical applications only a limited amount of resources is avail-
able. Therefore, at each time instant only a subset of the sensors
should be enabled in order to meet the cost constraints. We propose
a heuristic method for the optimal selection of this subset of micro-
phones, using as distortion metrics the Cramer-Rao Lower Bound
(CRLB) and as cost function the total distance between the selected
sensors. The heuristic approach has been compared to an optimal
algorithm, which searches the best sensor configuration among the
full set of microphones, while satisfying the cost constraint. The
proposed heuristic algorithm yields similar performance w.r.t. the
full-search procedure, but at a much less computational cost. We
show that this method can be used effectively in an acoustic source
tracking application.

Index Terms— Acoustic Source Localization, Acoustic Source
Tracking, Particle Filtering, Distributed Microphones Network

1. INTRODUCTION

The problems of acoustic source localization and tracking have re-
ceived a great deal of attention in recent years, for their intrinsic
usefulness in practical applications such as monitoring and video-
surveillance [1]. The performance of acoustic localization depends
on the geometry of the microphone array adopted, on the source po-
sition and on the SNR. Thus, when the source is moving, a large
number of microphones should be used to obtain high-performance
localization, with the side-effect that a great computational power is
required for the system to produce the position estimates. Recently,
an increasing interest towards sensor networks has opened the doors
to the use of distributed microphone networks [2], [3]. In this sce-
nario, the localization task can be accomplished without using all
the microphones simultaneously, but selecting from time to time the
best subset of microphones that allows to produce a good estimate
of the source position. In order to do this, some data have to be ex-
changed between microphones. Communication between the nodes
of the network is generally costly: for example, the total power con-
sumption increases as the average distance between the selected sen-
sors grows. Therefore, to select the optimal subset of microphones
out of the full set of sensors, not only does the chosen configuration
need to maximize some performance metrics (e.g. the localization

precision), but also the cost of the resulting network must be cheap
enough so that the resource constraints are met.

Most of the approaches used in distributed acoustic source lo-
calization and tracking may be borrowed by the sensor-network lit-
erature. In [2], a decentralized, dynamic clustering algorithm for
target tracking in a wireless sensor network is proposed. The full
set of sensors is partitioned in clusters, and the optimization is car-
ried out in such a way that only the cluster nearest to the target is
activated at each time instant. In this way, the algorithm implicitly
performs a trade-off optimization between the sensing performance
and the communication cost. In [3] the constrained selection of the
sensors is made explicit, and a sensor-scheduling optimization for
target tracking, which takes into account sensor usage, is devised.
The work proposed in [4] applies the sensor network ideas to the
acoustic tracking of vehicles, using a Bayesian approach. A sensor
selection method is also proposed, which tries to choose the most
“informative” microphones, thus minimizing the waste of resources.
A theoretical analysis of the performance of sensor selection for au-
dio source tracking is presented in [5], where dense circular clusters
of uniformly distributed sensors are considered. It is shown that, us-
ing a localization algorithm based on range-differences (e.g. spheri-
cal interpolation [6]), the performance of the distributed clusters de-
pend on the radii of the arrays and on the distance of the source from
the cluster reference microphone.

This paper describes a heuristic microphone selection algorithm
for acoustic source tracking, when a resource constraint has to be
fulfilled. The goal is to dynamically build a microphone array,
composed by a subset of the full collection of available sensors, so
that the error on the source position estimate (measured by MSE) is
minimized. In the tracking problem, at each time instant a dynamic
model of the source trajectory gives the expected source location.
Using this information, we can compute the Cramer-Rao Lower
Bound (CRLB) of the source position estimate for each sensor con-
figuration (see Section 2), which can be used as cost function for
array selection. This procedure can be very costly as the number of
microphones increases; for this reason, we present a recursive pro-
cedure which noticeably reduces the number of computations. This
heuristic technique gives quasi-optimal results and can be employed
for real time computations.

The rest of the paper is organized as follows: in the next section
the microphone selection problem is set up by defining the funda-
mental parameters used in the heuristic resource-constrained opti-
mization, which is detailed in Section 3. Section 4 presents some
experimental results about the heuristic selection performance with
static and moving sources. Finally, Section 5 draws some concluding
remarks.
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2. PROBLEM FORMULATION

Consider a set of M omnidirectional microphones, distributed onto a
finite 2D environment. To perform the localization and tracking of an
acoustic source that lies in the same environment, we want to select
an optimal subset S∗K of K microphones, 3 ≤ K ≤ M , by solving
the following combinatorial constrained optimization problem:

min
M

D(SK ,p) s.t. R(SK) ≤ RT (1)

where M denotes all the possible combinations of the M available
sensors and RT is a total resource constraint. The functions D and R
give, respectively, an estimate of the localization error and of the ex-
pense of resources, for a given sensor configuration SK and a source
position p. These two functions can be detailed as follows:

Array Cost R(SK ). We consider as array cost the total dis-
tance between the K microphones of the subset. When a maximum
array cost constraint is established, we discard all the solutions (ar-
rays) that do not satisfy such constraint. Let dij denote the Euclidean
distance between two microphones i and j belonging to the subset
SK . The array cost is computed as follows:

R(SK) =
1

2

∑
i,j∈SK

dij (2)

Distortion D(SK ,p). We consider as distortion metrics the
Mean Square Error of the source localization estimate, given SK

and p. To have a simple expression for the MSE, we approximate
it by computing the Cramer-Rao Lower Bound (CRLB) [7], which
gives a bound on the variance of the estimated source coordinates.
Therefore we postulate that the selected array adopts an unbiased
and efficient estimator, which attains the CRLB. Actually, such an
estimator does not exist [8]. However, we employ an MLE estimator
[6], which is asymptotically efficient. As shown in [9], the variance
of the MLE is very close to the theoretical CRLB also when a small
number of microphones is used.

The Cramer-Rao Lower Bound for the estimation variance of
each source coordinate is computed from the inverse of the Fisher
Information Matrix (FIM) J:

J = GC−1GT
(3)

The columns of the 2 × K(K−1)
2

matrix G are difference vectors
between unit-norm vectors gi, which are directed from the source to
the i-th microphone:

G = [. . . ,gij , . . .] (4)

gij = gi − gj (5)

gi =
p− qi

‖p− qi‖ , i ∈ SK (6)

In equation (6), the vector qi represents the position of the i-th

microphone that belongs to the subset SK . C is a
K(K−1)

2
×K(K−1)

2
diagonal matrix that contains the variances of the TDOA estimates
for each couple of microphones. In our work we take into account
the influence of the SNR on TDOA estimation variance [10], con-
sidering only high SNRs. Using an exponential acoustic attenuation
model [11] on source-microphone distance we obtain the following
inverse diagonal matrix:

C−1
(t,t) =

SNR

dα
i + dα

j

, i, j ∈ SK , 0 ≤ t ≤ K(K − 1)

2
(7)

di = ‖p− qi‖ (8)

SNR indicates the Signal-To-Noise Ratio when the source-
microphone distance is zero, and t is the column-index of the vector
gij in G. We assume that α = 2. To derive an MSE distortion
metrics from the CRLB, we use the trace of J−1, which is the sum
of the variances of each estimated source coordinate:

D(SK ,p) = tr(J−1) (9)

We notice that by formulation, G and C matrices depend only
on the geometry of the array and on the acoustic source position.

3. HEURISTIC MICROPHONE SELECTION FOR SOURCE
LOCALIZATION

We aim at finding a minimum distortion subset S∗K of K micro-
phones, given the source position and a maximum array cost con-
straint, as formalized in the previous section. The most effective
algorithm we can use to solve the optimization problem specified by
(1) is based on a full-search over all the possible solutions SK ∈
M. Unfortunately, the complexity of such approach grows as 2M .
We can dramatically diminish such complexity by exploiting sub-
optimal heuristic techniques. In this work we use two heuristic algo-
rithms which adopt a general approach composed of the following
two main steps:

Array initialization The array is initialized by inserting the first k
microphones using heuristic rules based on the array cost and
distortion functions; this step leads to an initial, possibly in-
complete, microphone subset Sk.

Array completion The array is updated using adding microphones,
until we reach the target array cost, exploiting distortion and

array cost functions; this step leads to the final Ŝ∗K subset.

There is no guarantee that S∗K = Ŝ∗K , i.e. the heuristic approach
is in general suboptimal w.r.t. the full search algorithm. In Sec-
tion 4 we will see that in practice, if the resource constraints are not
too tight, the distortions obtained with the two methods are almost
equal. In the following, we describe in detail the initialization and
completion steps.

3.1. Array initialization

The initialization step builds a first feasible solution, which is used
as starting point for the subsequent completion phase. We have used
two different initialization heuristics: a k Nearest Neighbor (k-NN)
technique and a Greedy Randomized Adaptive Search Procedure
(GRASP) [12]. The k-NN initialization is based on the choice of
the k microphones nearest to the source: this technique requires
M log M computations. The GRASP initialization has the same
computational complexity, but in this case the first k microphones
are chosen to resemble a Uniform Angular Array (UAA) [8], i.e.
the sensor should be uniformly spaced along a circle centered in the
source. The GRASP method can be summarized by the following
two steps:

Construction The algorithm is initialized by finding the L micro-
phones nearest to the source. We call this subset NL. For
each microphone l ∈ NL we try to build a UAA of k micro-
phones that contains l:

1. The theoretical positions of the other k−1 microphones
are established.
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2. For each position, we select the nearest microphone
which has not been selected yet.

Local search Given the previous L solutions, we choose the one
that exhibits the minimum distortion.

3.2. Array Completion

It is possible that heuristic algorithms used in the initialization phase
do not exploit all the resources available, so other microphones may
be added to the subset. Adding a new microphone allows to decrease
the distortion, but at the same time it increases the array cost. The
goal is to reach the maximum decrease in distortion with the mini-
mum increase in array cost. Our approach is based on the evaluation
of the following ratio:

ρ(Sk,Sk+1,p) = −D(Sk+1,p)−D(Sk,p)

R(Sk+1)−R(Sk)
(10)

where D identifies the distortion terms and R the array cost terms.
The subscripts k and k + 1 are used to identify values respectively
before and after the insertion of the new microphone. In our heuristic
approach, we add the microphone that maximizes ρ, since this pro-
duces the best trade-off between the distortion gain and array cost
increase. Each time a new microphone is inserted, a check on the ar-
ray cost constraint RT is made. The array completion phase requires
O(M) computations; therefore, the whole heuristic selection has a
computational complexity of M log M + M .

3.3. Fast Fisher Information Matrix Updating

When a new microphone is inserted into the incomplete subset
Sk we have to manage the re-computation of the Fisher Informa-
tion Matrix J for the evaluation of the new localization distortion
D(Sk+1,p). Of course, the new value of J can be evaluated by
computing the matrices G and C−1 in (3): however, this proce-
dure may be too complex on the computational side, especially for
real-time applications. In this section we present a less expensive
Fisher Information Matrix updating algorithm, useful for real-time
localization and tracking tasks.

Using the notation given in [8], we can rewrite equation (3) in
the following form:

Jk = HkTkC
−1
k TT

k HT
k (11)

Hk = [. . . ,gi, . . .], i ∈ Sk (12)

where Hk is a 2×k matrix that contains the versors gi, which point

from the source to the microphones; C−1
k is a

k(k−1)
2

× k(k−1)
2

matrix; finally, Tk is a k × k(k−1)
2

transform matrix for which we
have:

Gk = HkTk (13)

For example, for k = 4 we have:

T4 =

⎡
⎢⎣
−1 −1 −1 0 0 0

1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1

⎤
⎥⎦ (14)

For each column we have two non-zero entries, so that each column
of HkTk is a difference vector gij . When we add a new micro-
phone, a new subset Sk+1 of k + 1 microphones is generated, and a
new vector g has to be added to Hk, generating a new matrix Hk+1.

The new FIM (related to the new subset Sk+1) can be rewritten as
follows:

Jk+1 = Hk+1Tk+1C
−1
k+1T

T
k+1H

T
k+1 (15)

If we define
Hk+1 = [g|Hk] (16)

we can write the new Tk+1 as:

Tk+1 =

[ −1T 0
Ik Tk

]
(17)

Where 1 = [1, 1, . . . , 1]T is a k × 1 vector of ones, and Ik is the
k × k identity matrix. The new C−1

k+1 matrix is then defined as:

C−1
k+1 =

[
C
−1

0

0 C−1
k

]
(18)

Cn is a k × k diagonal matrix that contains the variances on TDOA
estimates between the added microphone and each of the micro-
phones that belong to subset Sk. Rewriting now the FIM matrix
(15) gives the update equation:

Jk+1 = Jk + g1T C
−1

1gT + HkC
−1

HT
k +

−g1T C
−1

HT
k −HkC

−1
1gT

(19)

Note that the computation of (15) requires O(k4) multiplications,
while (19) can be computed with just O(k2) multiplications, thus
yielding a noticeable complexity reduction.

4. EXPERIMENTAL RESULTS

We have tested the heuristic approach described in Section 3 on two
localization/tracking tasks. In the first simulation, we compare the
MSE obtained with arrays of different size K (which correspond to
different resource constraints) selected through the heuristic algo-
rithms with the MSE produced by arrays built with the full search
procedure. In the second experiment, instead, we consider a more
realistic application, in which the array selection is performed dy-
namically to track a moving source. We have considered as test en-
vironment a 10× 5 m rectangular 2D space for both simulations.

4.1. Heuristic Microphone Selection

We tested heuristic algorithms for microphone selection using
100 different random configurations of M = 16 uniformly dis-
tributed microphones. The source is positioned at the coordinates
p = [5, 2.5]T , and the SNR is 10 dB. For each configuration, we
set 6 different maximum rate constraints, based on the maximum
rate RMAX available for each configuration (the sum of all the
microphone distances), and we measured the distortion associated
to the best subset found from each heuristic algorithm. In equation
(20) the vector RT that contains the six maximum rate thresholds is
defined.

RT = RMAX

[
1

100

1

50

1

20

1

10

1

5

1

3

]
(20)

Figure 1 shows the mean array cost/distortion curves obtained
using our different initialization algorithms. As a reference per-
formance index, also the curve related to the full-search technique
is drawn. The GRASP approach overcomes the result of the sim-
ple k-NN especially for very low rate thresholds. The highest dis-
tortion gains on kNN are located when the array cost constraint is
RT (1) = RMAX

1
100

and RT (2) = RMAX
1
50

.
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Fig. 1. Array Cost/Distortion mean curves over 100 different random
sensor configurations.

SNR [dB] 0 5 10 15

MSE RT = 10 1.56 0.41 0.30 0.12
MSE RT = 20 0.79 0.32 0.13 0.05
MSE RT = 50 0.40 0.33 0.06 0.05

Table 1. Mean RMSE for source tracking for different SNRs.

4.2. Source Tracking

During tracking, a particle filtering technique [13] [14] is adopted
to estimate the trajectory of the source. At each time instant t, the
next estimated position of the source p̂(t) is used to choose the ar-
ray configuration during the evolution of the system, exploiting the
GRASP-based heuristic microphone selection and the fast FIM up-
date algorithm presented in Section 3.3. The acoustic source follows
a pseudo-casual trajectory computed through the Langevin model
[13], over 200 time instants t = [1, 2, . . . , 200] (see Figure 2).

5. CONCLUSIONS AND FUTURE WORKS

In this paper an efficient algorithm to perform source localization
and tracking using a distributed network of microphones has been
described. The localization and tracking tasks are performed un-
der a resource constraint that influences the number of active micro-
phones. Future work involves the investigation of the performance of
algorithms on configurations in which the microphones are grouped
in clusters: the idea is to exploit array fusion techniques when mi-
crophones of different clusters have to be involved in the localization
task.
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