
CONSTRAINED LINEAR LEAST SQUARES APPROACH FOR TDOA LOCALIZATION:
A GLOBAL OPTIMUM SOLUTION

Yifeng Zhou and Louise Lamont

Communications Research Center
Ottawa, Ontario, Canada K2H 8S2

ABSTRACT

In this paper, we formulate the time-difference-of-arrival (TDOA)
emitter localization problem as a quadratically constrained linear
least squares problem. We show that the constrained least squares
problem has a unique global minimum and develop a computation-
ally efficient algorithm for finding the emitter location estimates that
corresponds to the global minimum. The approach is robust and
more resilient to moderate and large sensor measurement noise than
other existing TDOA location techniques. Computer simulations are
used to demonstrate the effectiveness and performance of the pro-
posed algorithm.

Index Terms— TDOA, emitter location, nonlinear least squares,
Lagrangian multiplier, global minimum

1. INTRODUCTION

TDOA based emitter location is a classical problem and has been un-
der study for many years [1]. Navigation systems such as Loran use
time-of-arrival (TOA) measurements to locate aircraft and ships at
sea. More recently, it has attracted a lot interest the in wireless com-
munications system for locating an mobile unit. This is mainly due
to the adoption of certain regulations by the Federal Communica-
tions Commission [2] that require all wireless carriers and cell phone
manufacturers to incorporate position location capability in order to
provide the Enhanced-911 service. Beside emergency service, mo-
bile location techniques can also be used in vehicle navigation and
network optimization for resource management. Another emerging
application of TDOA emitter location is acoustic source localization
and tracking with microphone arrays [4].

In the past, many TDOA emitter localization techniques have
been developed, which include the maximum likelihood method, the
closed-form least squares solutions and the nonlinear least squares
approaches. The maximum likelihood estimator is known to provide
asymptotically unbiased estimates with covariances that achieve the
Cramér-Rao bound under Gaussian assumption. The main draw-
back of the maximum likelihood estimator is that it is computation-
ally intensive and lacks the capability of global convergence. Due to
the highly nonlinear nature of the likelihood criteria, numerical op-
timization techniques are needed for finding the optimal solutions.
The numerical procedures always require an initial estimate suffi-
ciently close to the actual solution; otherwise the algorithms will
converge to a local minimum instead of the desired global one. In
practice, this requirement imposes difficulties on the use of the max-
imum likelihood estimator since accurate initial estimates are in gen-
eral not available to us.

The closed-form solutions include the spherical interpolation
(SI) method [5][6], the spherical interaction (SX) method [7] and

the two-stage approach by Chan and Ho [8]. These methods mini-
mize an equation error that is introduced based the squares of dis-
tances between the sensors and the emitter. The equation error is
linear both in the emitter location vector and its norm. The SI and
SX methods are based on an intermediate least squares solution that
treats the emitter location vector and its norm as independent. The
use of the intermediate least squares solution is to eliminate either
the emitter location vector or its norm to make them solvable. The
SI and SX methods minimize the equation error that is projected
onto a subspace with a reduced dimension [6]. Since the projection
has caused the elimination of the constraint between the emitter lo-
cation vector and its norm, the SI and SX solutions are necessary but
not sufficient for the original least squares formulation. They are bi-
ased and suboptimal solutions in general. To counter the constraint
problem, Chan and Ho [8] proposed a two-stage approach, in which
an unconstrained least squares solution is first obtained and then re-
fined by applying the constraint. The two-stage approach is shown
to attain the Cramér-Rao bound when the measurement noise is suf-
ficiently small. However, for moderate or large measurement noise,
the approximations involved in the two-stage approach may not be
valid and will lead to degraded estimation performance. In addition,
the SX method requires additional information on the region of in-
terest to resolve ambiguity.

In this paper, we formulate the TDOA emitter localization as a
linearly constrained least squares problem, and apply the Lagrangian
multiplier method to solve the minimization problem as in [9][10].
We discuss the properties of the constrained linear least squares
problem and show that it has unique global minimum. An algorithm
for finding the global minimum solution is developed. It should be
noted that, although there are algorithms in linear algebra for con-
strained linear least squares minimization problems with quadratic
equality constraints [11][12][13], they can only deal with convex
constraints and are not applicable to TDOA emitter location prob-
lems since the constraint is non-convex. The rest of the paper is
organized as follows. In Section 2, the TDOA emitter location prob-
lem is formulated. In Section 3, the quadratically constrained linear
least squares solution for TDOA emitter location is developed. The
existence and uniqueness of a global minimum is discussed. Finally,
in Section 4, computer simulations are used to demonstrate the effec-
tiveness and performance of the proposed algorithm. Comparisons
are made to other methods and the Cramér-Rao bound.

2. PROBLEM FORMULATION

Assume that M sensors measure the TOAs of signal from a same
emitter. The emitter and sensor locations are denoted by xs and
{ξ

m
}, respectively, where m = 1, 2, . . . , M . Let t0 denote the sig-

nal departure time. The sensor TOA measurements can be modeled
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by

tm = t0 +
1

c
rm + wm, for m = 1, 2, . . . , M (1)

where rm = ‖ξ
m
−xs‖ denotes the distance between the emitter and

themth sensor, c denotes the signal propagation speed andwm is the
sensor measurement noise. The measurement noise is assumed to be
zero mean Gaussian distributed random process [14]. The Gaussian
assumption is often used for mathematical convenience and moti-
vated by the Central Limit Theorem. We use the first sensor as the
reference without loss of generality. Define rm1 = rm − r1. The
TDOAmeasurements with reference to the first sensor can be written
as

dm1 =
1

c
rm1 + wm1, for m = 2, . . . , M, (2)

where wm1 = wm − w1. The objective of TDOA location is to
find the estimate of xs given TDOA measurements {dm1; m =
1, 2, . . . , M}. In TDOA emitter location problems, each TDOA
measurement corresponds to a line of position that is defined by a
hyperbola with foci at the two sensor sites. This line of position is
called an isochrone since the points on it will result in a constant
difference in distance to the two sensor sites. When multiple TDOA
measurements are available, the emitter location can be obtained by
finding the intersection point of the isochrones. In practice, since
measurement noise always exists, the set of isochrones will not in-
tersect at a single point, and some criteria, such as the maximum
likelihood, must be used for finding the optimal emitter location es-
timate that would minimize its distance to the isochrones.

An equation error model can also be formulated based the
squares of the TOA measurements. This is the model that the SI,
the SX and the two-stage approach by Chan and Ho are based on.
Without loss of generality, we choose the first sensor site as the
origin of the system coordinates. The following relationship can be
obtained [5]

εm =
1

2
[r2

m − d2

m1] − rs − ξT

m
xs, (3)

form = 2, 3, . . . , M , where rs is the distance of the emitter location
to the origin, and εm is a equation error introduced to represent the
sensor measurement noise. In matrix form, (3) can be written as

ε = δ − rsd − Ãxs, (4)

where d = [d21, d31, . . . , dM1]
T ,

δ =
1

2

⎡
⎢⎢⎢⎣

r2

2 − d2

21

r2

3 − d2

31

...
r2

M − d2

M1

⎤
⎥⎥⎥⎦ , Ã =

⎡
⎢⎢⎢⎣

ξ11 ξ12

ξ21 ξ22

...
ξM1 ξM2

⎤
⎥⎥⎥⎦ , (5)

and ξm1 and ξm2 are the xy coordinates of themth sensor location.
Note that, in (4), the equation error ε is linear in xs and rs. How-
ever, when considering the constraint relationship between xs and
its norm rs, ε is nonlinear in xs. The emitter location can be esti-
mated by minimizing the norm of the equation error with respect to
xs [5][6][7][8].

3. CONSTRAINED LINEAR LEAST SQUARE APPROACH

Under the Gaussian assumption, we formulate the minimization of
the norm of the equation error as the following constrained general-
ized linear least squares minimization problem

min
x

‖Ax − b‖ subject to xT Cx = 0. (6)

where C = diag [1, 1,−1], A = W 1/2Â and b = W 1/2δ, andW is
a weighting matrix. The equality constrained optimization problem
(6) can be typically solved by using Lagrange multiplier method.
Note that, in [9][10], similar formulation and the use of Lagrange
multiplier method were also considered. However, the fundamental
question about the global optimum is not properly discussed includ-
ing its existence and uniqueness. In the following, due to length limit
of the paper, we will only consider the case where matrixA is of full
rank .

Using the Lagrange multiplier, the Lagrangian function of the
constrained problem (6) can be written as

L(x, λ) = ‖Ax − b‖2 + λxT Cx. (7)

where λ is the Lagrangian multiplier. According to the Lagrangian
multiplier theorem [15], if x∗ is a local minimum of (6), then there
exists a unique λ such that the partial derivatives of the Lagrangian
function with respect to x and λ, denoted by Lx(x, λ) and Lλ(x, λ),
respectively, should be zero. A second-order necessary condition is
given by

yT Lxx(x∗, λ∗)y ≥ 0 ∀ y ∈ {y �= 0; yT g
x
(x∗) = 0}, (8)

where Lxx(x, λ) is Hessian and gradient of the Lagrangian function
and g(x) = xT Cx with respect to x, respectively

Lxx(x, λ) = 2AT A + 2λC and g
x
(x) = 2Cx. (9)

From the second-order necessary condition, we have the following
property about (AT A + λC) [16].

Property If x∗ is a local minimum and λ∗ is the optimal multi-
plier, then, the largest two eigenvalues of AT A + λC must be non-
negative.

Consider the Hessian Lxx. Let A = UΓV T be the SVD of A,
andD = ΓT Γ. Then Lxx can be written as

Lxx = 2(V DV T + λC) = 2(V D1/2)[I + λP ](V D1/2)T , (10)

where P = D−1/2V T CV D−1/2. Let P = QΣQT be the eigende-
compostion of P . The Hessian can be further written as

Lxx = 2(V D1/2Q)[I + λΣ](V D1/2Q)T . (11)

Consider the eigenvalues of P . The eigenvalue signs of a matrix
are characterized by the inertia of the matrix . According to the
Sylvester’s law of inertia [3], since P and C can be shown to be
congruent, the inertia of matrix P is the same as that of C. Since C
has two positive and one negative eigenvalues, it follows that P also
has two positive and one negative eigenvalues. Assume that (AT A+
λI) is invertible. From the first-order condition of the Lagrangian
multiplier, we can obtain the normal equation as
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x = (AT A + λC)−1AT b. (12)

Substituting x into the quadratic constraint yields the secular equa-
tion

φ(λ) =

3∑
i

β2

i σi

(1 + λσi)2
= 0, (13)

where β = bT U(:, 1 : 3)Q and {σi; i = 1, 2, 3} denote the eigen-
values of Σ. The eigenvalues are arranged in a descending order.
The optimal Lagrangian multiplier can be found from the roots of the
secular function φ(λ), and corresponding x can be obtained from the
normal equation (12). We have the following lemma for the optimal
Lagrangian multiplier λ [16].

Lemma Let λ∗ be the root of the secular function in I, where

I = (−1/σ1,−1/σ3).

Then, the corresponding x∗ obtained from the normal equation (12)
is the global minimizer of the constrained optimization problem (6).

The optimal Lagrangian multiplier is given by the root of the
secular equation φ(λ) in I. Since the secular function is nonlinear,
numerical methods such as Newton’s Method can be used. New-
ton’s Method is known to be one of the most popular approaches
for solving nonlinear equations. In our case, when the data matrix
is well-conditioned, Newton’s method is found to be efficient with a
starting point of λ = 0. However, when A is not well-conditioned,
the optimal λ may be close to one of the boundries of I, which
are poles of the secular function. In this case, Newton’s Method
becomes unstable and often divergent. To avoid to the divergence
problem, we use a root searching algorithm provided in Matlab. The
uses a combination of bisection, secant and inverse quadratic inter-
polation method. The implementation of the algorithm was based
on [17], where a Fortran is described. The algorithm is very suit-
able to the application discussed here since the secular function has
been shown to be continuous, decreasing in I, and approaches ∞
and −∞ at the left and right boundary, respectively. The algorithm
is particularly efficient if an interval where the function values have
different signs.

4. PERFORMANCE ANALYSIS

In the simulation study,M = 8 sensors were used. The coordinates
of the sensors in the xy plane are given by

(0, 0), (−5, 8), (4, 6), (−2, 4), (7, 3), (−7, 5), (2, 5), (−4, 2).

A near-field and a far-filed emitter were simulated at coordinates
(8, 22) and (−50, 250), respectively. Additive Gaussian noise,
which is assumed to be zero mean and have a common variance
denoted by σ2

w/2 for all sensors, was simulated and added to the
sensor measurements. The noise is also assumed to be statistically
independent among the sensors. In this case the covariance matrix
of TDOA measurement noise w is given by an (M − 1)× (M − 1)
matrix, whose diagonal off-diagonal elements are σ2

w and 0.5σ2

w ,
respectively. The ML method, the SI and the two-stage approach by
Chan and Ho (referred to as the CH method) were tested for compar-
ison. For the ML method, the true emitter location was used as an
initial estimates in order to obtain good global convergence. For the
SI method, W = Ψ−1 was used as the weighting matrix according
[5]. Since Ψ contains the unknown ranges from the sensors to the

Table 1. MSEs of Estimates by Different Approaches: Arbitrary
array, Near-Field Source and σ2

w = 0.004/c2 .

M=4 M=5 M=6 M=7 M=8
SI 6.3387 0.6356 0.5804 0.4839 0.4624
ML 2.6740 0.6038 0.5269 0.4612 0.4246
CH 2.5729 0.5894 0.5249 0.4650 0.4218
QCLS 2.5910 0.5904 0.5238 0.4613 0.4197
CRB 2.7534 0.5803 0.5337 0.4571 0.4215

Table 2. MSEs of Estimates by Different Approaches: Arbitrary
array, Near-Field Source and σ2

w = 0.04/c2.

M=4 M=5 M=6 M=7 M=8
SI 1582.4 7.5806 6.1405 4.7459 4.6847
ML 162.30 7.4816 6.3505 5.0878 4.7365
CH 54.5805 6.3391 5.5393 5.0262 4.7198
QCLS 42.6554 6.2851 5.3518 4.7631 4.4785
CRB 27.5430 5.8032 5.3371 4.5709 4.2150

emitter, we approximate them by estimates from using W = Q−1

similar to the iterative procedures used in [8].
We denote by QCLS (quadratically constrained least squares)

the proposed approach for notational simplicity. Table 1 and 2 are the
MSEs for different method for σ2

w = 0.004/c2 and σ2

w = 0.04/c2 ,
respectively, under different numbers of sensors for the case of near-
field emitters. When σ2

w = 0.004/c2 is relatively small, the QCLS
method is similar to Chan and Ho’s method and the ML approach.
Their MSEs are all close to the CRB. They outperformed the SI
method for all numbers of sensors. When σ3

w = 0.04/c2 increased,
the QCLS method is seen to outperform the CH and SI method, es-
pecially when the number of sensors is small. Table 3 and 4 are
the MSEs via different numbers of sensors for far-field emitter when
σw

2 = 0.004/c2 and σ2

w = 0.04/c2 , respectively. For far-field emit-
ters, the performance is dominated by the geometry of emitter and
the sensors. In both cases, the QCLS performs slightly better than
but close to the CH method. The QCLS, CH and the ML method
outperformed the SI method, especially when the number of sensors
is small.

5. CONCLUSIONS

In this paper, the TDOA emitter localization was formulated as a
quadratically constrained linear least squares problem, which was
solved by the application of the Lagrangian multiplier method. We
showed that the nonlinear least squares problem has a unique global
minimum and an computationally efficient algorithm was developed

Table 3. MSEs of Estimates by Different Approaches: Arbitrary
array, Far-Field Source and σ2

w = 0.00005/c2 .

M=4 M=5 M=6 M=7
SI 7306.1 200.2814 46.4149 42.9571
ML 358.7286 139.5052 44.4287 40.2228
CH 473.7512 138.4030 44.5203 40.4216
QCLS 348.5150 137.4512 44.3042 40.2193
CRB 328.8220 143.9386 44.0635 38.5352
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Table 4. MSEs of Estimates by Different Approaches: Arbitrary
array, Far-Field Source and σ2

w = 0.0001/c2 .

M=4 M=5 M=6 M=7
SI (×106) 9.6759 0.0029 0.0005 0.0004
ML (×105) 5.8486 1.8868 0.4719 0.4245
CH (×104) 3.3493 0.1614 0.0452 0.0425
QCLS (×104) 1.5718 0.1503 0.0438 0.0408
CRB (×103) 3.2882 1.4394 0.4406 0.3854

for finding the emitter location estimate corresponding to the global
minimum. Another advantage of the approach is that, unlike the SX,
it does not depend on additional information on the region of inter-
est to resolve ambiguity of the location estimates. Computer sim-
ulations are used to demonstrate the effectiveness and performance
of the proposed algorithm. It was shown that the proposed approach
outperforms the existing methods especially when the sensor mea-
surement noise is moderate or large.
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