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ABSTRACT

Localization of chemical sources and prediction of their spread

is an important issue in many applications. We propose com-

putationally efficient framework for localizing low-intensity

chemical sources using stochastic differential equations. The

main advantage of this technique lies in the fact that it ac-

counts for random effects such as Brownian motion which

are not accounted for in commonly used classical techniques

based on Fick’s law of diffusion. We model the dispersion

using Fokker-Planck equation and derive corresponding in-

verse model. We then derive maximum likelihood estimator

of source intensity, location and release time. We demonstrate

the applicability of our results using numerical examples.

Index terms: Fokker-Planck, Chemical Source Localization.

1. INTRODUCTION

Signal processing techniques for detection and localization of

biochemical sources have attracted significant attention in re-

cent years because of their importance in many applications

such as, environmental monitoring and homeland security. One

of main concerns in all of the aforementioned applications is

rapid and reliable detection and localization of possible sources.

In addition, these models should provide tools for reliable de-

cision making once a biochemical event has been detected and

localized. In our previous work we proposed several inverse

models [3]-[5] that can potentially be used in many of these

applications.

In this paper we present a new framework for localization of

chemical sources using stochastic differential models. Namely,

the most challenging part of dispersion modelling lies in the

statistical nature of particle (liquid, gas) motion. To prop-

erly account for random effects one has to apply computa-

tionally intensive Brownian motion inverse algorithms such as

Feynman-Kac. The proposed framework accounts for stochas-

tic nature of dispersion through the well-know Fokker-Planck

equation which models the probability distribution of particle

velocities. The main advantage of this approach over classical

diffusion theory lies in the fact that it accounts for stochas-

tic nature of dispersion (e.g., Brownian motion) which is of

great importance if the source intensity is small which may be

the case in scenarios such as biochemical attacks, drug deliv-

ery, pollutant leakage, etc. On the other hand it is computa-
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tionally much more efficient than Monte Carlo simulator pro-

posed in our most recent work [5] since it provides analytical

expressions for probability density function of particle den-

sity at arbitrary locations and time points and does not require

computationally intensive Monte Carlo simulations. Using

the proposed model we derive the corresponding statistically

efficient estimators (maximum likelihood) in the presence of

noise since the chemical sensors measuring the concentration

of interest may be inaccurate.

This paper is organized as follows. In Section 2 we detail the

physical dispersion model and illustrate the main differences

compared to classical diffusion theory. In Section 3 we derive

the probability density function corresponding to our forward

model and derive maximum likelihood estimator in the pres-

ence of noise. In Section 4 we demonstrate the applicability

of our results using numerical examples.

2. PHYSICAL MODEL

Let us assume that at arbitrary time t0 we introduce n0 (or

equivalently concentration c0) particles in an open domain en-

vironment at location r0. When the number of particles is

large macroscopic approach corresponding to the Fick’s law

of diffusion is adequate for modeling the transport phenom-

ena. However, to model the motion of the particles when

their number is small a microscopic approach corresponding

to stochastic differential equations (SDE) is required.

The SDE process for the transport of particle in an open envi-

ronment is given by

dXt = μ(Xt, t)dt + σ(Xt, t)dWt (1)

where Xt is the location and Wt is a standard Wiener pro-

cess. The function μ() is referred to as the drift coefficient

while σ() is called the diffusion coefficient such that in a small

time interval of length dt the stochastic process Xt changes its

value by an amount that is normally distributed with expecta-

tion μ(Xt, t)dt and variance σ2(Xt, t)dt and is independent

of the past behavior of the process.

Assuming three-dimensional environment r = (x1, x2, x3),
the probability density function of one particle occupying space

around r at time t is given by solution to the Fokker-Planck
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equation [6]
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In this paper we assume an infinite two-dimensional (2D) space

(extension to three-dimensional space is straightforward) i.e.,

the domain of interest is much larger than the diffusion veloc-

ity. We also assume the space to be homogeneous, isotropic

and without the drift . Note that the above formulation can

easily deal with both drift and reflection from boundaries since

these can be included as boundary conditions for (2) and the

corresponding equation can then be solved numerically. How-

ever our main goal in this paper is to demonstrate the appli-

cability of localizing chemical sources using Fokker-Planck

equation and corresponding difference compared with classi-

cal approach. For the simplified environment the solution to

(2) is given by

f(r, t) =
1

4πD(t − t0)
e−‖r−r0‖2/4D(t−t0) (4)

where D is the coefficient of diffusivity.

Note that the above solution represents the probability den-
sity function of one particle occupying space around r at time

t assuming it was released from location r0 at time t0. For a

large number of particles starting from the same point (source

location) the iso-concentric lines are given by concentric cir-

cles, see Figure 1. This is an expected results since for large

number of the particle the classical approach based on the well

known Fick’s law of diffusion

∂c

∂t
= div (K∇c) (5)

where K is 3 × 3 diffusivity matrix is applicable and c is the

concentration.

However, for a small number of particles the overall disper-

sion does not quite behave as a circle which can be seen from

Figure 2. As a result estimation of the initial properties (inten-

sity, location, time) can be inaccurate which may deteriorate

our possibility for correct decision making which is the main

motivation for the proposed approach.

3. STATISTICAL MODEL

To model the measurement we assume a spatially distributed

sensor array consisting of m sensors located at r1, r2, . . . rm.

Fig. 1. Concentration distribution of 1000 particles after 20

time steps – classical model.

Fig. 2. Concentration distribution of 1000 particles after 20

time steps – Stochastic model.

Further, we assume that each sensor takes measurements at

times t1, . . . tk. To obtain the measurement model we first as-

sert that chemical sensors count number of particles in certain

areas (volumes) around their locations ri. Let yij be the num-

ber of particles measured by sensor located at ri and time tj .

Next we compute the corresponding probability mass function

(PMF) of the number of particles in an arbitrary area (Δi =
Δ(ri)) which corresponds to the sensor measurements i.e., we

compute probability that there are ni particles within

Δi = (xi − Δ ≤ xi ≤ xi + Δ, yi − Δ ≤ yi ≤ yi + Δ) (6)

at time tj which is given by

Pj(yij = n) =
(

n0

n

)
Pn

j,Δi
(1 − Pj,Δi

)n0−n
n = 1, . . . , n0

(7)

where Pj,Δi is the probability of a particle to occupy an area

Δi and n0 is the initial number of particles.

Next assuming there are m sensors (i = 1, . . . m) the joint

PMF is given by

Pj(y1j = n1, . . . , ymj = nm) =
(

n0

n1 · · ·nm

)
·

·
(

1 −
m∑

i=1

Pj,Δi

)n0−
∑ m

i=1 ni

·
m∏
1

Pni

j,Δi
(8)

To model sensor inaccuracies we assume that the measure-

ment noise can be modeled using Poison distribution (note
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that chemical sensors count number of particles which is a

discrete random variable). In that case the resulting distribu-

tion has to be computed numerically either using Monte Carlo

simulations or as the convolution of the multinomial and Poi-

son distributions. To simplify the computational complexity

in this paper we propose to compute the unknown parameters

in the presence of noise using least-squares estimator. Note

that our Brownian motion simulator proposed in requires ad-

ditional Monte Carlo simulations for forward modeling.

In the absence of noise the log likelihood function is given by

l(n0, r0, t0) =
k∑

j=1

log
(

n0

y1j · · · ymj

)
+

+
k∑

j=1

m∑
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yij logPj,Δi

k∑
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{(
n0 −

m∑
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)
log

(
1 −

m∑
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Pj,Δi

)}
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In the presence of noise the corresponding PMF is given by

P(y1j = n1, . . . , ymj = nm) =
m∏

i=1

ni∑
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τ !
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with the corresponding log likelihood function

l(n0, r0, t0, λ) =
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j=1
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In the remainder of the paper we will assume that λ is known

since in principle it can be estimated in the calibration phase

when only noise is present. In that case the maximum like-

lihood estimator is computed by minimizing the above likeli-

hood functions (9 and 11).

In the remainder of the paper we will assume that time of re-

lease t0 is known i.e., we estimate only the source location

and intensity. Note that in principle the initial guess of the re-

lease time can be obtained using classical approach and then

it can be further refined through stochastic estimation.

4. NUMERICAL EXAMPLES

We present numerical examples to demonstrate the applica-

bility of the proposed algorithms. Unless otherwise stated

we assume source strength of n0 = 1000particles and Poi-

son noise with mean λ = 0.03 which means that most likely

value for sensor noise is 2. In addition unless otherwise stated

we assume that the number of sensors is given m = 400 and

number of time samples is k = 15. In all the figures unless

otherwise stated we illustrate the results for 10000 runs of the

forward model. In all the examples we define the relative error

as

err =
‖r̂0 − r0‖

r0
(12)

Classical Stochastic

Estimating intensity 6.5% 0.64%

Estimating location 2.5%

Estimation time 1.53 %

Table 1. The estimation results of classical and stochastic es-

timation

0 100 200 300 400 500
0

5000

10000

15000

0

0.1

0.2

0.3

0.4

N0

m

R
el

at
iv

e 
er

ro
r

Fig. 3. Relative error as a function of source intensity and

number of sensors.

where r0 is the true value and r̂0 is the corresponding esti-

mate.

For comparison, in Table 1 we illustrate the estimation re-

sults of classical and stochastic estimation. As expected the

stochastic approach outperforms classical technique since the

number of particles is relatively small. Note that in this com-

parison we used least-squares estimator in both cases.

In Figure 3 we illustrate the relative error source intensity esti-

mation as a function of source intensity and number of sensors

using maximum likelihood estimator and with λ = 0. As ex-

pected the error decreases significantly as m increases which

may potentially be useful in sensor array design.

In Figure 4 we illustrate the relative error using least-squares

estimator as a function of λ. As expected the error increases

as noise variance increases however even for relatively large

levels of noise the estimation error is smaller than 10%.

In Figures 5-7 we illustrate the histogram of relative errors

for 1000 runs for n̂0, r̂0 and t̂0 using maximum likelihood and

λ = 0. These histograms can be used for evaluation of con-
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Fig. 4. Relative error as a function of λ – intensity estimation.
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Fig. 5. Error histogram – intensity estimation.
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Fig. 6. Error histogram – location estimation.

fidence intervals for the proposed estimators. As it can be

seen (as expected from Table 1) we are most confident in es-

timating the intensity of the source which is important for the

prediction phase where this estimate must be used in order to

find expected size of regions where the expected concentration

will be above certain thresholds.

5. CONCLUSIONS

We addressed the problem of estimating low-intensity chem-

ical sources using stochastic differential equations (SDE). To

model the chemical dispersion we employed the Fokker-Planck

equation. This approach can be easily extended to various
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Fig. 7. Error histogram – release time estimation.

scenarios such as urban environment consisting of buildings,

complex tunnel structures, turbulence etc., by properly defin-

ing drift as a non-homogeneous variable. We used the maxi-

mum likelihood method to estimate the unknown parameters

in the presence of the Poison noise. Numerical examples were

used to illustrate the applicability of the proposed algorithms.

Future research will extend these techniques to 3D scenar-

ios. We will also address the issue of computational complex-

ity and compare it to the complexity of the Brownian motion

estimator.
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[4] A. Jeremić and A. Nehorai, “Landmine detection and

localization using chemical sensor array processing,”

IEEE Trans. on Signal Processing, vol. 48, no.5 pp.

1295-1305, May 2000.

[5] M. Ortner, A. Nehorai, and A. Jeremic, “Biochemical

Transport Modeling and Bayesian Source Estimation in

Realistic Environments,” vol. 55, no. 6, June 2007.

[6] Hannes Risken, The Fokker-Planck Equation: Methods
of Solutions and Applications, 2nd edition, Springer,

New York, 1989.

2576


