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ABSTRACT

Among many existing time difference of arrival (TDOA)
based sound source localization (SSL) algorithms, the Phase
Transform (PHAT) is extremely popular for its excellent per-
formance in low noise environments, even under relatively
heavy reverberation. However, PHAT was developed as a
heuristic approach and its working principle has not been
completely understood. In this paper, we present the rela-
tionship between PHAT and a maximum likelihood (ML)
framework for multi-microphone sound source localization.
We show that when the environment noise approaches zero,
PHAT is indeed a special case of the ML algorithm, which
explains its good performance under low noise environments.
In addition, we show that as long as the noise stays low,
PHAT remains optimal in ML sense even when the room
reverberation is heavy, which explains its robustness over
reverberation.

Index Terms— Sound source localization, phase trans-
form, maximum likelihood, noise, reverberation

1. INTRODUCTION

Sound source localization (SSL) using microphone arrays
has been an active research topic since the early 1990’s [1].
It has found many important applications such as human-
computer interaction and intelligent rooms. Depending on
the application scenario, a number of SSL techniques are
popular, including steered-beamformer (SB) based, high-
resolution spectral estimation based, time delay of arrival
(TDOA) based, and learning based. Among them, the
TDOA based approaches have received extensive investi-
gation [1, 2, 3, 4, 5, 6].

Consider an array of P microphones. Given a source sig-
nal s(t) and its frequency representation S(ω), the signals re-
ceived at these microphones can be modeled in the frequency
domain as [5, 7]:

Xi(ω) = αi(ω)S(ω)e−jωτi + Hi(ω)S(ω) + Ni(ω), (1)

where i = 1, · · · , P is the index of the microphones, τi is
the time of propagation from the source location to the ith

microphone; αi(ω) is a gain factor that includes the propaga-
tion energy decay of the signal, the gain of the correspond-
ing microphone, the directionality of the source and the mi-
crophone, etc; Ni(ω) is the noise sensed by the ith micro-
phone; Hi(ω)S(ω) represents the convolution between the
environmental response function and the source signal, of-
ten referred as the reverberation. In many existing SSL ap-
proaches [8, 1, 6], the reverberation term was ignored for sim-
plicity.

The generalized cross correlation (GCC) based SSL max-
imizes the sum of weighted cross correlation between each
pair of the received signals as:

R(s) =
P∑

i=1

P∑
k=1

∫
Ψik(ω)Xi(ω)X∗

k(ω)ejω(τi−τk)dω. (2)

GCC has been investigated widely in literature [8]. While
many different weighing functions Ψik(ω) can be applied, the
heuristic-based PHAT weighting [8] de ned as:

Ψik(ω) =
1

|Xi(ω)X∗
k(ω)| =

1
|Xi(ω)||Xk(ω)| (3)

has been found to perform very well under realistic acoustical
conditions [2, 7]. Inserting Eq. (3) into Eq. (2), one gets:

R(s) =
∫ ∣∣∣

P∑
i=1

Xi(ω)ejωτi

|Xi(ω)|
∣∣∣
2

dω, (4)

This algorithm is called SRP-PHAT [9], where SRP stands for
steered response power. PHAT was rst developed by Carter
et al. in [10] as an ad hoc technique. Experiments show that
PHAT works very well under low noise environments, even
when the reverberation of the room is high. Due to its high
performance and low computational complexity, PHAT or its
variants have since received a lot of attention and been used
in a number of systems, such as [1, 2, 3, 7]. Nevertheless, the
reason why PHAT works so well in practice has not been fully
explored. In [1, 7], the authors showed that a maximum like-
lihood (ML) approach to sound source localization leads to
PHAT under low noise conditions. However, their results are
limited to one pair of microphones. It is not clear whether the
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same statement is valid in multiple microphone cases, where
the direct extension of the ML approach in [1, 7] is in fact
suboptimal [11].

In this paper, we compare the SRP-PHAT algorithm with
a TDOA based ML algorithm for multi-microphone sound
source localization we developed in our previous work [11].
We show that under the assumption that the environment
noise is low, PHAT can actually be derived from our ML-
based SSL (ML-SSL) algorithm. Our research lays the
ground for two important facts about PHAT: rst, PHAT
is indeed optimal in ML sense when the noise is low; second,
PHAT is very robust to reverberation, because its optimality
is independent of the amount of environment reverberation.

The rest of the paper is organized as follows. We brie y
review the ML based SSL algorithm in Section 2. Relation-
ship between the ML-SSL algorithm and PHAT is discovered
in Section 3. Experiments and conclusions are given in Sec-
tion 4 and 5, respectively.

2. THE MAXIMUM LIKELIHOOD SSL

Let us start by rewriting Eq. (1) into a vector form:

X(ω) = S(ω)G(ω) + S(ω)H(ω) + N(ω), (5)

where

X(ω) = [X1(ω), · · · , XP (ω)]T ,

G(ω) = [α1(ω)e−jωτ1 , · · · , αP (ω)e−jωτP ]T ,

H(ω) = [H1(ω), · · · ,HP (ω)]T ,

N(ω) = [N1(ω), · · · , NP (ω)]T .

Among the variables, X(ω) represents the received signals,
hence it is known. G(ω) can be estimated or hypothesized
during the SSL process, which will be detailed later. The re-
verberation term S(ω)H(ω) is unknown, and we will treat it
as another type of noise.

To make the above model mathematically tractable, we
assume the combined total noise,

Nc(ω) = S(ω)H(ω) + N(ω), (6)

follows a zero-mean, independent between frequencies, joint
Gaussian distribution, i.e.,

p(Nc(ω)) = ρ exp
{
− 1

2
[Nc(ω)]HQ−1(ω)Nc(ω)

}
, (7)

where ρ is some constant; superscript H represents Hermitian
transpose, Q(ω) is the covariance matrix, which can be esti-
mated by:

Q(ω) = E{Nc(ω)[Nc(ω)]H}
= E{N(ω)NH(ω)} + |S(ω)|2E{H(ω)HH(ω)}

(8)

Here we assume the noise and the reverberation are uncorre-
lated.

Given the covariance matrix Q(ω), the likelihood of the
received signals can be written as:

p(X|S,G,Q) =
∏
ω

p(X(ω)|S(ω),G(ω),Q(ω)), (9)

where

p(X(ω)|S(ω),G(ω),Q(ω)) = ρ exp
{ − J(ω)/2

}
, (10)

J(ω) = [X(ω)−S(ω)G(ω)]HQ−1(ω)[X(ω)−S(ω)G(ω)].
(11)

The goal of the proposed sound source localization is thus to
maximize the above likelihood, given the observations X(ω),
gain matrix G(ω) and noise covariance matrix Q(ω). Note
the gain matrix G(ω) requires information about where the
sound source comes from, hence the optimization is usually
solved through hypothesis testing. That is, hypotheses are
made about the source source location, which gives G(ω).
The likelihood are then measured. The hypothesis that results
in the highest likelihood is determined to be the output of the
SSL algorithm.

In our previous work [11], we have shown that the solu-
tion of the above maximum likelihood formulation is to max-
imize:

J2 =
∫

ω

[GH(ω)Q−1(ω)X(ω)]HGH(ω)Q−1(ω)X(ω)
GH(ω)Q−1(ω)G(ω)

dω

(12)
In the next session, we will show that under certain assump-
tions, this ML-SSL algorithm can be simpli ed as the SRP-
PHAT algorithm widely used in practice.

3. FROMML-SSL TO PHAT

We start by examining the combined noise covariance matrix
introduced in Eq. (8). The rst term in Eq. (8) can be directly
estimated from the silence periods of the acoustical signals:

E(Ni(ω)N∗
j (ω)) = lim

K→∞
1
K

K∑
k=1

Nik(ω)N∗
jk(ω), (13)

where k is the index of audio frames that are silent. Note the
background noises received at different microphones may be
correlated, such as the ones generated by computer fans in
the room. In such cases, the above covariance matrix will be
non-diagonal.

The second term in Eq. (8) is related to reverberation. It
is generally unknown. As an approximation, we assume it is
diagonal:

|S(ω)|2E{H(ω)HH(ω)} ≈ diag(λ1(ω), · · · , λP (ω)),
(14)
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with the ith diagonal element as:

λi(ω) = E{|Hi(ω)|2|S(ω)|2}
≈ γ(|Xi(ω)|2 − E{|Ni(ω)|2}) (15)

where 0 < γ < 1 is an empirical parameter. Eq. (15) assumes
that the reverberation energy is a portion of the difference be-
tween the total received signal energy and the environmental
noise energy. It also assumes that there are many indirect
paths, such that when the re ected signals arrive at the micro-
phones, they are largely independent. While it is dif cult to
justify either assumption theoretically, these two assumptions
have been used in the literature [2, 7] and showed very good
performance in practice.

The ith diagonal elements of the combined covariance ma-
trix Q(ω) can thus be written as:

κi(ω) = λi(ω) + E{|Ni(ω)|2}
= γ|Xi(ω)|2 + (1 − γ)E{|Ni(ω)|2} (16)

Due to the computational cost involved in inverting a full
Q(ω) matrix for each frequency bin ω, in practice we usu-
ally assume that Q(ω) is diagonal, i.e.:

Q(ω) ≈ diag(κ1(ω), · · · , κP (ω)) (17)

Another variable in Eq. (12) is the gain factor αi(ω) em-
bedded in G(ω). In certain applications, αi(ω) can be mea-
sured before hand. Otherwise, we may assume it as a positive
real number and estimate it as follows:

|αi(ω)|2|S(ω)|2 = |Xi(ω)|2 − λi(ω) − E{|Ni(ω)|2}
≈ (1 − γ)(|Xi(ω)|2 − E{|Ni(ω)|2}),

(18)

where both sides represent the power of the signal received
at microphone i without the combined noise (noise and rever-
beration). Therefore, we have:

αi(ω) =
√

(1 − γ)(|Xi(ω)|2 − E{|Ni(ω)|2})/|S(ω)|,
(19)

Given Eq. (17) and (19), Eq. (12) can be simpli ed as:

J2 =
∫

ω

1∑P
i=1 |αi(ω)|2/κi(ω)

∣∣∣
P∑

i=1

α∗
i (ω)

κi(ω)
Xi(ω)ejωτi

∣∣∣
2

dω

(20)
In order to derive PHAT, let us assume that the sig-

nal to noise ratio (SNR) is very high, i.e., |Xi(ω)|2 �
E{|Ni(ω)|2}. We have the following approximations un-
der such a condition:

Q(ω) ≈ diag(κ1(ω), · · · , κP (ω))
≈ diag(γ|X1(ω)|2, · · · , γ|XP (ω)|2) (21)

αi(ω) ≈
√

(1 − γ)|Xi(ω)|2/|S(ω)| (22)
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Fig. 1. Top-down view of the virtual room for synthetic ex-
periments.

Inserting into Eq. (20) one obtains:

J2 ≈
∫

ω

∣∣∣ ∑P
i=1

|Xi(ω)|
γ|Xi(ω)|2 Xi(ω)ejωτi

∣∣∣
2

∑P
i=1

|Xi(ω)|2
γ|Xi(ω)|2

dω

=
1

γP

∫ ∣∣∣
P∑

i=1

Xi(ω)ejωτi

|Xi(ω)|
∣∣∣
2

dω (23)

which is equivalent to SRP-PHAT (4).
There are two noticeable conclusions that can be drawn

from the above derivation. First, when the signal to noise ra-
tio is high, PHAT is a special case of the ML-SSL algorithm,
which supports its optimality under low noise environments.
Second, in Eq. (23), the reverberation parameter γ is outside
the PHAT computation. This indicates that as long as the
noise stays low, PHAT remains an optimal solution in max-
imum likelihood sense regardless the amount of reverberation
in the environment. These two conclusions provides strong
evidence why PHAT works well in low noise, reverberative
rooms.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of SRP-PHAT
(Eq. (4)) and ML-SSL (Eq. (20)) on a synthetic scene, where
the noise level and reverberation can be well controlled. A
virtual room with size 7× 6× 2.5 meters is created, as shown
in Fig. 1. A circular 6-microphone array is placed near the
center of the room, at (3.5, 1.5, 1). The radius of the micro-
phone array is 0.135 m. A speaker is talking at a distance of
1.5 m from the center of the microphone array, at an angle θ.
We introduce two noise sources in the scene. A ceiling fan is
mounted in the middle of the room, at (3.5, 3, 2.5), and a com-
puter is located in the corner, at (7, 0, 0.5). The wave signals
from the speaker, the fan and the computer are all recordings
from the real world. The reverberation effect of the room is

2567



Table 1. Experimental results of SRP-PHAT and ML-SSL ac-
curacy on the synthetic dataset. Cells with bold fonts indicate
best performance in the group.

Reverberation = 100 ms

Input
SNR

SRP-PHAT

ML-SSL
�  = 0.1 �  = 0.3 �  = 0.5

<2° <10° <2° <10° <2° <10° <2° <10°
25 dB 97.6% 98.9% 97.9% 98.8% 97.9% 98.9% 97.8% 98.9%
20 dB 92.0% 93.6% 92.8% 94.7% 93.0% 94.9% 92.7% 94.6%
15 dB 89.0% 91.4% 91.6% 93.9% 91.5% 93.8% 91.2% 93.7%
10 dB 85.2% 88.8% 89.0% 91.7% 88.8% 90.9% 88.1% 90.4%
5 dB 76.1% 82.0% 87.2% 90.3% 85.9% 89.7% 85.2% 89.2%
0 dB 64.5% 71.1% 81.2% 88.0% 77.4% 84.0% 75.7% 82.9%

Reverberation = 500 ms

Input
SNR

SRP-PHAT

ML-SSL
�  = 0.1 �  = 0.3 �  = 0.5

<2° <10° <2° <10° <2° <10° <2° <10°
25 dB 60.1% 79.2% 60.0% 78.8% 59.8% 78.8% 59.9% 78.8%
20 dB 59.4% 78.4% 60.3% 78.9% 59.7% 78.7% 59.6% 78.6%
15 dB 60.3% 78.0% 60.4% 78.8% 60.1% 78.5% 59.6% 78.4%
10 dB 58.8% 77.0% 59.8% 77.1% 59.5% 77.6% 59.2% 77.7%
5 dB 56.3% 75.5% 57.4% 75.2% 57.2% 75.5% 57.1% 75.4%
0 dB 54.5% 74.4% 56.2% 74.4% 55.6% 74.8% 55.2% 75.3%

added to all signals according to the image model [12]. The
noise covariance matrix (Eq. (13)) is computed using silence
periods.

The SSL algorithm performs hypothesis testing at 4◦ in-
tervals in azimuth. The reported results are the average of
10 speaker locations uniformly distributed around the micro-
phone array (θ = 0, 36◦, ..., 324◦). At each location the signal
length is 30 seconds. The analysis window of SSL is 40 ms,
overlapping by 20 ms. We sample 100 speech frames from
each location and perform SSL on them. Table 1 reports the
average accuracy, in terms of percent of the SSL estimates (to-
tally 1000 frames) which are within 2◦ and 10◦ of the ground
truth angle. To verify the impact of reverberation over the
SSL performance, we synthesize rooms with 100 ms and 500
ms reverberation times, as seen in the upper and lower parts
of Table 1 respectively.

It can be observed from Table 1 that SRP-PHAT usually
performs as good as ML-SSL when the input SNR is high (20
dB or above), but its performance drops signi cantly when
the SNR becomes low. In most indoor (e.g., of ces and meet-
ing rooms) environments, the signal to noise ratio is above 15
dB, which explains SRP-PHAT’s satisfactory performance in
practice.

For the ML-SSL algorithm, the tunable parameter γ does
seem to impact the nal performance. This is particularly
true when the reverberation is low. For instance, in the top
table, when the reverberation is low (100 ms), when the input

SNR is 0 dB, choosing γ = 0.1 results in a much better per-
formance than γ = 0.5. This gap is however not signi cant
when reverberation is high (bottom table, 500 ms). Therefore,
for practical applications, using a xed γ ranging from 0.1 to
0.3 can usually result in satisfactory performance.

5. CONCLUSIONS

In this paper we brie y reviewed the ML-SSL algorithm for
multiple microphones, and showed that it degenerates to the
popular SRP-PHAT algorithm under the assumption of zero
noise, irrespective of the amount of reverberation. This ex-
plains the common observation that SRP-PHAT works really
well in low-noise reverberative environments.

6. REFERENCES

[1] M. Brandstein and H. Silverman, “A practical methodology
for speech localization with microphone arrays,” Computer,
Speech, and Language, vol. 11, no. 2, pp. 91–126, 1997.

[2] H. Wang and P. Chu, “Voice source localization for automatic
camera pointing system in videoconferencing,” in Proc. of
IEEE ICASSP, 1997.

[3] J. Kleban, “Combined acoustic and visual processing for video
conferencing systems,” Tech. Rep., The State University of
New Jersy, Rutgers, 2000.

[4] P. Georgiou, C. Kyriakakis, and P. Tsakalides, “Robust time
delay estimation for sound source localization in noisy envi-
ronments,” in Proc. of WASPAA, 1997.

[5] T. Gustafsson, B. Rao, and M. Trivedi, “Source localization in
reverberant environments: performance bounds and ML esti-
mation,” in Proc. of ICASSP, 2001.

[6] D. Li and S. Levinson, “Adaptive sound source localization
by two microphones,” in Proc. of Int. Conf. on Robotics and
Automation, 2002.
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