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ABSTRACT

When addressing the energy–based source localization problem us-
ing wireless sensor networks, distributed localization method is nec-
essary to reduce the energy and bandwidth consumption. In this pa-
per, a novel distributed source localization method called projection
onto the nearest local minimum (PONLM) is proposed, which can
be carried out at each of active nodes with quite lightweight compu-
tation, in contrast to most existing centralized method. Simulation
results show our method can yield much better performance than the
previous methods.

Index Terms— Energy–based source localization, Wireless
sensor networks, Distributed method, PONLM

1. INTRODUCTION

The problem of energy–based source localization in wireless sen-
sor networks has recently received a great deal of attention [1–7].
In [1], X. Sheng et al. has addressed this problem asymptotically
via maximum likelihood estimation (MLE) in a centralized manner,
i.e., requiring the transmission of the full data set to a central point
for processing. However, the centralized method is very costly for
dense networks in terms of communication bandwidth and energy
consumption, in contrast to distributed methods where the compu-
tation is performed at each of nodes. Therefore, several distributed
methods have been proposed in [2–7], among which, [2], [5] are typ-
ical.

In [2], Rabbat and Nowak proposed a distributed source lo-
calization method based on incremental subgradient algorithm [8]
where the estimation is calculated and passed from one node to the
next. However, since the MLE problem associated with energy-
based source localization is a highly nonconvex optimization prob-
lem with many local minima or saddle points, the method mostly
results in local minima and even divergence, which has been shown
in [5] via simulation. Recently, a new incremental optimization
algorithm called normalized incremental subgradient (NIS) algo-
rithm was proposed in [4], which can offer better convergence
performance than the IS algorithm and work nicely especially when
the number of active sensors is somewhat large (>10), however,
demanding a decreasing stepsize to set.

A better method was proposed in [5], where the authors formu-
lated the localization problem as a convex feasibility problem solved
by finding a point in the intersection of some convex sets(i.e., some
disks centered at the active sensor’s location) using projection onto
convex sets (POCS) method. The POCS method can be implemented
in a distributed manner and guaranteed to converge to a limit point.
However, it should be noted that the limit point may be far away

from the true source location in two cases. The first case is that
the intersection is too large, which mainly occurs when the source
lies outside the convex hull of sensors. In this case, there are many
points in the intersection which are far away from the true source
location but may be taken as the estimation of the source location by
the POCS method. The second case is that the intersection is empty,
corresponding to the inconsistent convex flexibility problem which
can be solved by steered sequential projection [9]. In this case, the
method converges to a limit circle instead of a point and thus the
estimation may be inferior.

In this paper, we propose a new energy-based distributed source
localization method, which is based on a new concept called
projection onto the nearest local minimum (PONLM). Our pro-
posed method differs significantly from the POCS method because
our method attempts to find the point of intersection of some circles
centered at the active sensor’s location rather than a point in the
intersection of some disks, which has been shown in section III.
Extensive simulations have been conducted to compare the perfor-
mance of two methods. The simulation results show that our method
can yield much better performance than the POCS method.

2. PROBLEM STATEMENT

In the energy-based source localization problem, an acoustic source
locates at an unknown location, θ ∈ R

2 (generalization to R
3 is easy

but not explored here), in the sensor field consisting of N sensor
nodes, emits a signal that attenuates in space. At the same time,
L sensors (named active sensors) detect the presence of the source
and take signal energy measurements according to the energy decay
model [1]:

ei =
A

||θ − pi||2 + wi i = 1, 2, . . . , L (1)

where A is signal strength the source emits, pi ∈ R
2 is the ith sen-

sor’s location which is known, ei is the energy measurement the ith
sensor takes, wi is a zero-mean white Gaussian noise.

For simplicity, we suppose A is known. The case of unknown
signal strength also can be disposed by generalizing our method to
the energy-ratio nonlinear least square problem (see [1]).

The maximum likelihood estimation problem is formulated as
follows:

θ̂ = arg min
θ

L∑
i=1

(
A

||θ − pi||2 − ei

)2

(2)

here, the objective function consists of L component functions, and
each is nonconvex, thus the objective function is also nonconvex and
has many local minima, the negative log of which has be shown in
Fig. 1 of [5].
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3. LOCALIZATION ALGORITHM

Consider the problem:

min
x∈Rm

f(x) =

n∑
i=1

fi(x) (3)

where, component functions fi : Rm → R, i = 1, 2, · · · , n have
common local minima, i.e., the global minima of f .

It has been mentioned in [4] that the incremental optimization
method (e.g., IS [8] or NIS [4]) for problem (3) can theoretically
avoid trapping into local minima by alternately progressing to local
minimum of each component function, even if f(x) is nonconvex.
This is due to the fact only when reaching the global minimum of f
with a suitable stepsize, the algorithm stagnates.

On the other hand, it can be observed that in problem (2), when
in absence of measurement noise, component functions have a com-
mon local minimum, i.e., the solution of the problem. Moreover, all
local minima of each component function of (2) lie on a circle. For
example, the circle corresponding to the ith component function is
defined by:

||θ − pi||2 =
A

ei
(4)

Particularly, if given a point(not the center pi), denoted by x, we can
calculate the nearest local minimum, denoted by y, of the ith com-
ponent function of (2) from x, by solving the following optimization
problem

y = arg min
θ

||θ − x||2

s.t.

(
A

||θ − pi||2 − ei

)2

= 0 or ||θ − pi||2 =
A

ei
(5)

A unique analytic solution can be obtained, which has the form

y = pi + ri × x − pi

||x − pi|| (6)

where ri =
√

A
ei

.

Based on the above analysis, we propose a new incremental
source localization method called projection onto the nearest local
minimum, where we take the nearest local minimum as the current
estimation of θ. Our method for the noise–free case can be written
in a subiterative framework as follows:{

ϕi,k = pi + ri × ϕi−1,k−pi

||ϕi−1,k−pi|| , i = 1, 2, · · · , L

θk = ϕL,k = ϕ0,k+1, k = 1, 2, · · · (7)

Here, ϕi,k denotes the nearest local minimum of the ith component
function from ϕi−1,k, and the subscript ‘i’ is used to denote subiter-
ation and ‘k’ to cycle (there are L subiterations in each cycle).

Below we present a proposition on the convergence of the
PONLM method. We use the notation {ϕi,k}i=1∼L

k→∞ to denote the
sequence generated by Eq. (7)

· · · , ϕ1,k, ϕ2,k, · · · , ϕL,k, ϕ1,k+1, ϕ2,k+1, · · · , ϕL,k+1, · · ·
and {ϕi,k}k→∞ to each subsequence

· · · , ϕi,k, ϕi,k+1, · · ·
Proposition: the sequence {ϕi,k}i=1∼L

k→∞ generated by Eq. (7)
converges to the point of intersection of L circles if it converges.

Fig. 1. An example comparison of convergence: POCS vs. PONLM.

Proof: Suppose the sequence {ϕi,k}i=1∼L
k→∞ converges to θ∗.

Hence, it is readily shown that all subsequences {ϕi,k}k→∞ also
converges to θ∗, i.e., limk→∞ ϕi,k = θ∗. Observe that

ϕi,k − ϕi−1,k = pi + ri
ϕi−1,k − pi

||ϕi−1,k − pi|| − ϕi−1,k (8)

Hence,

||ϕi,k − ϕi−1,k|| = |ri − ||ϕi−1,k − pi||| (9)

Take the limit of both sides in Eq. (9) as k → ∞, then we have

||θ∗ − pi|| = ri, i = 1, 2, · · · , L (10)

Eq. (10) means that θ∗ is the point of intersection of L circles.�
Although it can not be guaranteed that the sequence {ϕi,k}i=1∼L

k→∞
must converge, we fortunately find from simulations that it can con-
verge most of the time, whatever the algorithm initializes from.

Obviously, our method is to find the point of intersection of L
circles, which differs from the POCS method [5] in that the solution
obtained by the POCS method is a point in the intersection of L
disks defined by ||θ − pi||2 ≤ A

ei
, i = 1, 2, · · · , L. For example,

in Fig.1, both methods are initialized from the point θ0. The thick

line denotes the path
−−−−−−−→
θ0ϕ1,1ϕ2,1 taken by the POCS method. One

can find that the POCS method converges to ϕ2,1, a point in the
shadowed intersection of two disks, while our method takes the path−−−−−−−−−−−−−−−−→
θ0ϕ1,1ϕ2,1ϕ1,2ϕ2,2ϕ1,3 and converges to ϕ1,3, the nearer point of
intersection of two circles from θ0. The further comparison between
two methods is presented in Section 5.

Practically, component functions of (2) often have no common
local minimum(i.e., L circles don’t intersect at a point) when the
measurement noise exists and thus the method demonstrated in (7)
will not halt at any point. However, as the steered sequential pro-
jection method [9], our method is also suitable for the noise case
with a decreasing stepsize αk to guarantee its convergence to a point.
Two phase implementation of the PONLM method is listed in Fig. 2.
Note that the norm k<20 is employed to avoid some abnormal cases
where the algorithm is “hesitating” in the vicinity of the true source
location.

4. SIMULATION RESULTS

In this section, we have performed simulations in Matlab to compare
the performance of our method with the POCS [5]. In our simula-
tions, N (if not specified, N=2000) nodes are deployed uniformly at
random within the region [0, 100]m × [0, 100]m , taking measure-
ments corrupted by zero–mean white Gaussian noise with variance
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1. Initialization: θ0 is arbitrary, k = 0
2. Phase one:

DO
k = k + 1
ϕ0,k = θk−1

FOR each i

ϕi,k = pi + ri × ϕi−1,k−pi

||ϕi−1,k−pi||
θk = ϕL,k

WHILE ||θk − θk−1|| ≥ 10−3 or k < 20
T1 = k

3. Phase two:
DO

k = k + 1
ϕ0,k = θk−1

αk = 1
k−T1+1

FOR each i
ϕi,k = (1 − αk)ϕi−1,k

+αk

[
pi + ri × ϕi−1,k−pi

||ϕi−1,k−pi||

]
θk = ϕL,k

WHILE ||θk − θk−1|| ≥ 10−3

Fig. 2. Projection onto the Nearest Local Minimum algorithm.

equal to 1. The source is located at θ∗ = [50, 50] and emits a sig-
nal with energy A = 100. Simultaneously, we suppose that sensors
detect the presence of the source if their energy measurements are
above 5, i.e., the minimum signal–to–noise rate is 7dB.

First, we show the convergence performance of two methods
in two cases mentioned above, i.e., when the intersection of disks
is empty or large, where the POCS method mostly converge to the
point away from the true source while the PONLM method can work
much better. The results of two methods initialized from multiple
initial points on a grid are presented in Fig. 3, 4, 5 and 6, where
the initial points are depicted by crosses, followed by a line which

depicts the convergence path (consisting of θk only, e.g.,
−−−−→
θ0θ1θ2)

taken by the methods, and ends at the convergence point denoted by
triangles; active sensors are denoted by empty dots and the source
by a square; circles are plotted according to Eq.(4).

From simulations, we find that our method always converges to
the vicinity of the true source when the source lies within the convex
hull of sensors. However, when the source is outside the convex hull,
the method may sometimes stagnate at a point away from the true
source. An example is shown in Fig. 7, where the asterisks depicts
the initial points which lead to not convergence to the vicinity of the
true source. One can see that our method converges at most initial
points. Also, it is observed that at least one among four corner points
leads to convergence to the vicinity of the true source.

Then the overall performance of two methods is compared in
terms of average errors through 10000 Monte Carlo simulations,
where N is set from 100 to 2100 in 200 increments. The simula-
tion results are presented in Fig. 8, where, “1stPhase” represents the
average estimation error of the first phase of two methods. Note
that the estimate of the first phase is obtained by averaging over L
sensor’s estimates of the T1th cycle, i.e.,

∑L
i=1 ϕi,T1 , which can be

easily computed through a single communication cycle. As shown
in the figure, the PONLM method is always better than the POCS
method, especially when the number of active sensors is small. This
is mainly due to the fact that the probability that the source is out-
side the convex hull of active sensors increases with the number of
active sensors decreasing. It is also observed that, whether the POCS

method or the PONLM method used, the estimation performance of
the first phase is only somewhat lower than that of the second phase.
However, it should be noted that the communication overhead of the
first phase is much lower.

Additionally, we propose a better method called global PONLM
without requiring a diminishing stepsize, motivated by the observa-
tion that among four corner points there is at least one rendering
convergence to the vicinity of the true source. In this method, the
final estimate is the best one among four estimates of the first phase
corresponding to four initial points on the corner of the network,
i.e., [0, 0], [0, 100], [100, 0] and [100, 100]. Here, the best estimate
means the one that minimizes the cost function (2). The average es-
timation performance is also shown in Fig. 8. From the figure, one
can see that the global PONLM method significantly outperforms
other methods, but only a single additional communication cycle is
added for the cost function evaluation since the estimation process
of four initial points and the evaluation process of four estimates can
be done in parallel. Generally, the global PONLM method needs
averagely less than 10 cycles in all.

Fig. 3. Path taken by the POCS method when the intersection is
empty.

Fig. 4. Path taken by the PONLM method when the intersection is
empty.

5. CONCLUSION

A lightweight distributed source localization method called PONLM
is proposed in this paper. Simulation results show that the method
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Fig. 5. Path taken by the POCS method when the intersection is
large.

Fig. 6. Path taken by the PONLM method when the intersection is
large.

mostly converges to the vicinity of the true source with only several
cycles of communication averagely and yields much better perfor-
mance than the POCS method. Furthermore, the concept of PONLM
can be extended to deal with other problems where the nearest local
minima of each component function in (3) can be obtained analyti-
cally or approximated by some simple optimization methods.

6. ACKNOWLEDGE

This work is supported by National Nature Science Foundation of
P.R.China under Grant No.60772100 and Science and Technology
Committee of Shanghai Municipality under Grant No.05DZ15004.

7. REFERENCES

[1] X. Sheng and Y. H. Hu, “Maximum Likelihood Multiple-Source
Localization Using Acoustic Energy Measurements with Wire-
less Sensor Networks,” IEEE Trans. Signal Processing, vol. 53,
no. 1, pp. 44–53, Jan. 2005.

[2] M. G. Rabbat and R. D. Nowak, “Decentralized Source Local-
ization and Tracking,” In Proceedings of the 2004 IEEE Interna-
tional conference on Acoustics, Speech, and Signal Processing,
Montreal, Canada, May 2004, pp. 921–924.

Fig. 7. The PONLM method may not converge globally when the
source lies outside the convex hull of sensors.

Fig. 8. Localization performance.

[3] M. G. Rabbat and R. D. Nowak, “Distributed Optimization in
Sensor Networks,” In Proceedings of the Third International
Sympsium on Information Process in Sensor Networks, Berke-
ley, California: ACM Press, New York, Apr. 2004, pp. 20–27.

[4] Qingjiang Shi and Chen He, “A New Incremental Optimiza-
tion Algorithm for ML–Based Source Localization in Sensor
Networks,” IEEE Signal processing letters, vol. 15, pp. 45–48,
Jan. 2008.

[5] D. Blatt and A. O. Hero, “Energy–Based Sensor Network
Source Localization via Projection on to Convex Sets,” IEEE
Trans. Signal Processing, vol. 54, no. 9, pp. 1–7, Sep. 2006.

[6] D. Blatt, A. O. Hero, and H. Gauchman, “A Convergent Incre-
mental Gradient Method with Constant Step Size,” SIAM Jour-
nal on Optimization, vol. 18, pp. 29–51, Feb. 2007.

[7] M. G. Rabbat and R. D. Nowak, “Robust Decentralized Source
Localization via Averaging,” In Proceedings of the 2005 IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing, Philadelphia, PA, USA, Mar. 2005, pp. 1057–1060.

[8] A. Nedic and D. P. Bertsekas, “Incremental Subgradient Meth-
ods for Nondifferentiable Optimization,” SIAM Journal on Op-
timization, vol. 12, pp. 109–138, 2001.

[9] Y. Censor, A. R. D. Pierro, and M. Zaknoon, “Steered Sequential
Projections for the Inconsistent Convex Feasibility Problem,”
Nonlinear Analysis: Theory Methods, and Application, Series
A, vol. 59, pp. 385–405, 2004.

2556


