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ABSTRACT

Sequential Monte Carlo (SMC) methods, also referred to as
particle filters, have been successfully applied to a variety of
highly nonlinear problems such as target tracking with sen-
sor networks. In this paper, we propose the application of a
new class of SMC methods named cost-reference particle fil-
ters (CRPFs) to target tracking with mobile sensors. CRPF
techniques have been shown to be a flexible and robust alter-
native when there is no knowledge about the probability dis-
tributions of the noise in the system. The sensors positioning
during tracking is determined by the predicted target’s loca-
tion as obtained by the CRPF. The performance of the method
is investigated by simulations and compared to tracking with
standard particle filters (SPFs).

Index Terms— sequential Monte Carlo methods, cost-
reference particle filters, mobile sensor network.

1. INTRODUCTION

Mobile sensor networks have undergone through significant
developments due to the rapid progress in distributed robotics
and low power embedded systems. Controlled mobility of
sensors enables a new set of possibilities including target track-
ing with mobile sensors. For such tasks, sensors trajectory
planning has been addressed as one of the most important
problems. The criteria applied for movement of the sensors
include maximizing the mutual information between the fi-
nal target state and the measurement sequence [1] and mini-
mizing the posterior Cramér-Rao lower bound (PCRLB) [2].
These methods involve a multi-step planning which imposes
strong memory requirements and computational burden to the
system. In [3], an online recursive update of sensors’ posi-
tions based on real time target state estimate by standard par-
ticle filters (SPFs) was introduced. Yet this relies on the right
assumptions of system noise distribution, which remains un-
known in many situations.
In this paper, we introduce the application of a new class

of particle filters, also known as Cost-Reference Particle Fil-
ters (CRPFs) [4], to the target tracking with mobile sensors.

This work has been supported by the National Science Foundation under
CCF-0515246 and the Office of Naval Research under Award N00014-06-1-
0012.

The main feature of the new method is that it is not based
on any particular assumptions of the distribution of the sys-
tem processing noise. Instead, a user-defined cost function
is applied measuring the quality of the state signal estimates
using the available observations. The implementation of our
scheme is based on a centralized strategy, that is, a fusion cen-
ter receives all the sensed information, processes it and makes
all the decisions.
The paper is organized as follows: in Section 2 we present

the fundamentals of the CRPF algorithm. In Section 3, the
CRPF-based tracking implementation in our mobile sensor
network is introduced. We show the tracking performance
of the CRPF and compare it with that of the SPF in Section 4.
Finally, some concluding remarks are made in Section 5.

2. COST REFERENCE PARTICLE FILTERING

The discrete-time dynamic system used in many signal pro-
cessing applications can be described as

xt = fx(xt−1) + wt

yt = fy(xt) + εt (1)

where xt is the system state vector at time t, fx(·) is the
state transition function, wt is the state perturbation at time
t, yt denotes the observation vector at time t, fy(·) is the
measurement function transforming the state, and εt repre-
sents the observation noise vector at time t. In SPF [5] where
the probability distributions of the noise processes are known,
the filtering problem is aimed at the online estimation of the
a posteriori probability density function, p(x0:t|y1:t). Yet in
many situations when the processing noise is unknown, SPF
still relies on the assumptions of knowing these probability
distributions, which eventually may lead to quite inaccurate
estimation results when the assumptions are incorrect .
Recently, a new class of particle filters called CRPFs has

been proposed to address the filtering problem when there is
no knowledge of the distributions of the system noises except
for their means (without loss of generality, we assume that
the noises have zero means) [4]. In CRPF methods, a user-
defined cost and risk functions are used for assigning particle
weights, which are then used for resampling. At time instant
t, the random measure of the system state is denoted by χt =
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{x(m)
t , C(m)

t }M
m=1 where C(m)

t is the cost of the mth particle
and M is the total number of particles. The measure χt is
recursively updated upon the reception of the measurements
yt. The implementation of CRPF is described as follows:
1. At time t + 1, resampling takes place according to the

probability mass function (pmf) π̂
(m)
t+1 for m = 1, 2, . . . , M .

Here π̂
(m)
t+1 is dependant on the one-step risk R(m)

t+1 of particle
m which is defined as:

R(m)
t+1 = λC(m)

t + R(x(m)
t |yt+1) (2)

and
π̂

(m)
t+1 ∝ μ(R(m)

t+1) (3)

where μ(·) is a monotonically decreasing function, and 0 ≤
λ ≤ 1 is a forgetting factor that prevents assignment of ex-
cessive weights to previous observations. The risk function
R(xt|yt+1) could be viewed as a prediction of the cost incre-
mentΔC(xt+1|yt+1) that can be obtained before xt is actually
propagated. The new measure after resampling is denoted as
χ̂t = {x̂(m)

t , Ĉ(m)
t }M

m=1.
2. Random particles x(m)

t+1 for m = 1, . . . , M , are propa-
gated by employing a user defined proposal density pt+1(xt+1|
x̂(m)

t ) which satisfies

E
pt+1(xt+1|x̂(m)

t )
[xt+1] = fx(x̂(m)

t ) (4)

where Ep[·] denotes the expectation with respect to the pdf in
the subindex. An easy way to implement the selection of this
function is to use a Gaussian kernel with adaptively selected
variance [4].
3. The particle costs are updated as follows:

C(m)
t+1 = λC(m)

t + ΔC(x(m)
t+1|yt+1) (5)

The incremental cost functionΔC(x(m)
t+1|yt+1) can have a sim-

ple form such as

ΔC(x(m)
t+1|yt+1) = ‖yt+1 − fy(x(m)

t+1)‖q (6)

where q ≥ 1.
4. The state estimation can be obtained by

x̂t+1 =
M∑

m=1

x(m)
t+1π

(m)
t+1 (7)

where π
(m)
t+1 ∝ μ(C(m)

t+1 ), form = 1, . . . , M .

3. TRACKINGWITH MOBILE SENSORS

In [3], a tracking methodology was proposed with mobile
sensors, where the sensors’ locations are recursively updated
by an online target state estimation. SPF algorithm was ap-
plied with prior knowledge of the system noise distributions.
In this section, we implement for tracking a CRPF algorithm,

where no assumptions about the system noise distributions are
made.
The target motion model [6] is assumed to be subject to

an unknown acceleration expressed by

xt+1 = Φtxt + Γtwt (8)

where the matricesΦt and Γt are given by

Φt =
(

1 Ts

0 1

)
⊗ I2, Γt =

(
T 2

s

2
Ts

)
⊗ I2,

where ⊗ denotes Kronecker product. The state vector for
the target is defined by xt = [x1,t, x2,t, ẋ1,t, ẋ2,t]�, where
x1,t, x2,t denote the target location and ẋ1,t, ẋ2,t the target
velocity in a two-dimensional plane at time instant t. The
symbol Ts is the sampling time interval and wt is the target
propagation noise, representing the target acceleration uncer-
tainty. We assume that the target motions in the x1 and x2

directions are statistically independent.
The observations are obtained by received signal strength-

based (RSS) sensors [7]. The signal power reaching the n−th
sensor can be measured as a random log-normal variable, i.e.,

y
(n)
t = P0 − 10α log10

(
|s(n)

t − ρt|
d0

)
+ ε

(n)
t (9)

where s(n)
t = [s(n)

1,t , s
(n)
2,t ] and ρt = [x1,t, x2,t], for n =

1, · · ·N , are the positions of the n-th sensor and the target
at time instant t respectively; ε

(n)
t is the measurement noise

with unknown distribution; P0(dB) is the received power at a
reference distance d0; α is a parameter that is used to model
path loss. The power P0 and the parameter α are assumed
known. The measured information, y(1:N)

t , is sent to a fusion
center at each time instant t and the objective is to track the
target state x0:t based on the observations y1:t = y

(1:N)
1:t .

The sensors are assumed moving by following the linear
model

s
(n)
1,t+1 = s

(n)
1,t + u

(n)
1,t Ts

s
(n)
2,t+1 = s

(n)
2,t + u

(n)
2,t Ts (10)

where u
(n)
1,t ∈ (umin1 , umax1) and u

(n)
2,t ∈ (umin2 , umax2)

denote the controlled velocity in the x1 and x2 directions, re-
spectively, by the n−th sensor. The velocities are assumed
constant from t to t + 1. The choice of [u(n)

1,t , u
(n)
2,t ] is subject

to minimizing the cost function

fn,t+1 = ||s(n)
t+1 − s̃(n)

t+1|| (11)

and s̃(n)
t+1 is the projected sensor’s positions symmetrically cir-

cled around the predicted target location ρ̃t+1 [3], where

ρ̃t+1 = ρ̂t + v̂tTs. (12)

The whole tracking procedure is summarized in Table 1.
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4. SIMULATION RESULTS

In this section we investigate the performance of the CRPF-
based tracking algorithm and compare it with the performance
of a method that uses the traditional SPF. The tracking was
based on the measurements of N = 3 sensors. The param-
eters in the sensor measurement model were set to P0 =
30(dB) at d0 = 1m, and α = 2.3. The observation noise
was modelled as a mixture Gaussian vector

ε
(n)
t ∼ 0.1N (0, 50) + 0.4N (0, 10) + 0.5N (0, 1)

for n = 1, . . . , N .
The initialization state vector was assumed to have a Gaus-

sian distribution with mean x̄0 = [0 0 1 1] and covariance
matrix C0 = diag{25, 25, 1, 1}. The mobile sensors were
positioned around the predicted location of the target on a cir-
cle with radius r = 500m. The state propagation noise was
also modelled as a mixture Gaussian, where

wi,t ∼ 0.1N (0, 1) + 0.5N (0, 0.1) + 0.4N (0, 0.01)

where i = 1, 2. In the CRPF-based tracking, the used cost
and risk functions were

C(x0) = 0
ΔC(xt|yt) = ‖yt − fy(xt)‖2

R(xt|yt+1) = ‖yt+1 − fy(Φtxt)‖2. (13)

The mapping function μ that transforms the costs and risks
into pmfs used for resampling and estimation had the follow-
ing forms:

μ1(C(m)
t ) =

1

C(m)
t

μ2(C(m)
t ) =

1

(C(m)
t − mini{C(i)

t } + δ)β
(14)

where δ = 0.01 and β = 2, corresponding to CRPF1 and
CRPF2 methods in the simulations. The forgetting factor was
set to λ = 0.95. For particle propagation, we used a Gaus-
sian density with adaptively selected covariance matrixCt+1,
where Ct+1 = diag{σ2,(m)

1,t+1 , σ
2,(m)
2,t+1 , σ

2,(m)
3,t+1 , σ

2,(m)
4,t+1} and

σ
2,(m)
i,t =

t − 1
t

σ
2,(m)
i,t−1 +

‖x(m)
i,t − fx(x̂i,t−1)(m)‖2

td
(15)

after t > 10, where d = 4 is the target state dimension. The
initial values were σ

2,(m)
1:2,0 = 5 for positions and σ

2,(m)
3:4,0 = 0.1

for velocity, which were kept unchanged until t = 10.
We implemented the SPF-based tracking method with the

true mixture Gaussian density and with a mismatched noise
distribution. In the mismatched case,wt ∼N (0,Qw), where
Qw = diag{σ2

w,1, σ
2
w,2} and σw,1 = σw,2 = 0.1; ε

(n)
t ∼

N (0, 100). The tracking time was 800 seconds with a sam-
pling interval of Ts = 1sec. The used number of particles
was M = 300. Figure 1 shows the target trajectory in a

single simulation run and the estimates corresponding to the
SPF- and CRPF-based algorithms. As a performance metric,
we applied the root mean square error (RMSE) of the esti-
mates. We ran the experiment with 50 independent trajecto-
ries and the results are shown in Figures 2 and 3 for position
and velocity, respectively . As can be seen from the graphs,
the CRPF performed almost as well as the SPF method that
uses correct information, and much better than the SPF that is
based on incorrect distributional assumptions.

Fig. 1. target trajectory vs estimates

Fig. 2. RMSE comparison for position

5. CONCLUSIONS

In this paper we proposed tracking a target using RSS mea-
surements of a fewmobile sensors and based on cost-reference
particle filtering. Being a more flexible and robust algorithm,
the CRPF allows for estimation without prior knowledge of
any system probability density functions. The computer sim-
ulation results demonstrate good performance of the CRPF.
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Fig. 3. RMSE comparison for velocity
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Table 1. Tracking with mobile sensors

1. Initialize the algorithm

2. for t = 1 . . . T

• Resample through π̂
(m)
t+1 , obtaining new parti-

cles sets as χ̂t = {x̂(m)
t , Ĉ(m)

t }M
m=1

R(m)
t+1 = λC(m)

t + R(x(m)
t |yt+1)

π̂
(m)
t+1 ∝ μ(R(m)

t+1)

• Propagate particles through proposal density
pt+1(xt+1|x̂(m)

t )

• Update particle costs and normalization

C(m)
t+1 = λC(m)

t + ΔC(x(m)
t+1|yt+1)

π
(m)
t+1 ∝ μ(C(m)

t+1 )

π
(m)
t+1 =

π
(m)
t+1∑M

m=1 π
(m)
t+1

form = 1, . . . , M

• Target state estimation

x̂t+1 =
M∑

m=1

x(m)
t+1π

(m)
t+1

• Sensors Motion Control:
– Calculate the projected sensor locations
by

s̃
(n)
1,t+2 = ρ̃1,t+2 − r cos θn

s̃
(n)
2,t+2 = ρ̃2,t+2 − r sin θn

where θn = 2πn
N , for n = 1, · · · , N , r is

the circle radius and

ρ̃t+2 = ρ̂t+1 + v̂t+1Ts

– Choose the control input for the sensors
following

u(n)
t+1 = arg min

ut+1
||s(n)

t+2 − s̃(n)
t+2||

– Move the sensors with corresponding
control signals to

s(n)
t+2 = s(n)

t+1 + u(n)
t+1Ts

for n = 1, . . . , N .
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