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ABSTRACT

When tracking a target in a sensor network with constrained
resources, significant reductions in sensor communications
and usage cost can be realized by using non-myopic sensor
scheduling. The use of integer non-linear programming is
beneficial for obtaining myopic sensor schedules [1]. In this
paper, we extend its benefits to a non-myopic sensor schedul-
ing scenario consisting of a distributed network of bearing
sensors. We formulate this problem, which we call the Leader
Node Scheduling problem, as an integer non-linear program-
ming problem with the objective of minimizing the total sen-
sor usage and communications cost over a planning horizon
subject to tracking error constraints per time step.

Index Terms— tracking, non-myopic sensor scheduling,
integer programming, outer approximation, particle filtering

1. INTRODUCTION

In many target tracking applications, it is essential to opti-
mally utilize the sensor resources to minimize their usage
and/or communication costs while keeping the target in track.
When a sensor or a group of sensors is selected for the next
measurement acquisition step, it is denoted as greedy or My-
opic Sensor Scheduling (MSS) (see [1]); if we select a sen-
sor or group of sensors for the nextM measurement acquisi-
tion steps, it is referred to as Non-myopic Sensor Scheduling
(NMSS). Certain target tracking scenarios like the ones in [2]
benefit from NMSS. For the scenario mentioned in [2], the
NMSS problem is solved using efficient search strategies.
We however formulate (a more difficult version of) the

entire problem as an Integer Non-Linear Program (INLP)
problem and solve it using an optimization strategy known as
Outer Approximation (OA) [3]. OA was first used in [1] for
MSS; we extend its use for NMSS scenarios.
The paper is organized as follows. In Section 2, we first

formulate the problem. Sections 3 and 4 detail the formu-
lation of the objective function and the tracking error con-
straints respectively for the INLP. We solve this INLP prob-
lem in Section 5. Section 6 provides simulation results and
the conclusions are made in Section 7.

2. PROBLEM FORMULATION

We consider a sensor network consisting of S sensors, each
placed at a known and fixed location xs = (xs, ys). These
sensors acquire bearingmeasurements from the target moving
in the network. L of the S sensors are leader nodes and fuse
the measurements obtained from other sensor nodes to update
the target state belief.
The target state vector xk at time k consists of the 2-D

position components xk and yk and the 2-D velocity compo-
nents ẋk and ẏk (xk = [xk yk ẋk ẏk]T ). The target motion
is modeled by a discrete-time nearly constant velocity (NCV)
model:

xk+1 = Fxk + wk, (1)

where F is the state transition matrix and wk ∼ N (0,Qk)

and is white. Also, F =

⎡
⎣ I2 ΔtI2

02 I2

⎤
⎦ and Qk =

q

⎡
⎣ Δt3

3 I2
Δt2

2 I2

Δt2

2 I2 ΔtI2

⎤
⎦ where Δt is the sampling interval

and q is the noise intensity.
The target originated measurement zk,s from sensor s is

zk,s = h(xk,xs) + vk = tan−1

(
yk − ys

xk − xs

)
+ vk (2)

where vk ∼ N (0, Rs) and Rs is the measurement noise vari-
ance for sensor s. We track the target using a particle filter
(see references in [4]).
The non-myopic sensor scheduler plans the sensor sched-

ule over anM step planning horizon to minimize the commu-
nications and usage cost subject to predicted tracking error
constraints. The sensor scheduler at planning stepm of anM
step planning horizon selects a leader node lm and a subset of
sensor nodes Sm ⊂ S to acquire measurements to transmit to
lm. If the leader node at the previous planning step is different
than the one at the current planning step, then the belief state
held by the leader node at the previous planning step must be
transferred to the one at the current planning step. The M
step sensor schedule is completely executed and the planning
procedure is repeated i.e. the sensor scheduler is operated in
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the Open Loop mode. We call this problem of obtaining the
M step sensor schedule the Leader Node Scheduling (LNS)
problem.

3. OBJECTIVE FUNCTION FORMULATION

To compute the sensor usage and communication costs, we
use the energy model from [2]. Using this model, we develop
cost terms c1

l,s, the cost of sensors acquiring observations and
communicating them to leader node l, and c2

l,l′ , the cost of
transmitting the target belief state from leader node l to node
l′.
The objective function for the LNS problem is the total

sensor usage and communications cost over theM step plan-
ning horizon. Let al,s,m (l = 1, 2, . . . , L; s = 1, 2, . . . , S; m
= 1, 2, . . .M ) be a collection of S × L×M binary decision
variables, such that al,s,m = 1 if a leader node l is chosen
along with sensor node s at planning step m and is 0 other-
wise. Let bl,m (l = 1, 2, . . . , L; m = 1, 2, . . .M ) be a collec-
tion of L ×M binary decision variables; b l,m is 1 if a leader
node l is chosen at planning stepm. The association between
al,s,m and bl,m is made by the following logical proposition:

(al,1,m = 1) or (al,2,m = 1) or . . . (al,S,m = 1)
⇒ bl,m = 1 ∀ l, ∀ m (3)

The logical proposition (3) indicates that if at least one of the
S variables al,1,m, al,2,m, . . . , al,S,m is 1, then bl,m = 1. We
convert (3) into a conjunction of clauses, where each clause
is a disjunction of literals. The resulting logical expression
is then said to be in Conjunctive Normal Form (CNF) and is
given by [4]:

(al,1,m = 1) or (al,2,m = 1) or . . .

(al,S,m = 1) ⇒ bl,m = 1

≡
(
(al,1,m = 0) or (bl,m = 1)

)
and(

(al,2,m = 0) or (bl,m = 1)
)

and . . .

and
(
(al,S,m = 0) or (bl,m = 1)

)
, ∀ l, ∀ m. (4)

Equation (4) is equivalent to a series of SLM inequalities

al,s,m ≤ bl,m ∀ s, ∀ l, ∀ m. (5)

Next we define decision variables dl,l′,m+1(l = 1, 2, . . . ,
L, l′ = 1, 2, . . . , L, m = 1, 2, . . . , M − 1) which are 1 if
leader node l is chosen at planning step m and leader node
l′ is chosen at planning step m + 1. There exists a logical
expression between bl,m and bl′,m+1 given by(

(bl,m = 1) and (bl′,m+1 = 1)
)
⇔ (dl,l′,m+1 = 1) (6)

Equation (6) is transformed into CNF and the resultant
3L2(M − 1) inequalities (∀ l, m = 1, . . . , M − 1) are:

bl,m + bl′,m+1 − dl,l′,m+1 ≤ 1 (7a)
−bl,m + dl,l′,m+1 ≤ 0 (7b)

−bl′,m+1 + dl,l′,m+1 ≤ 0. (7c)

At time index k, the target belief is held by the leader node
l0 ∈ L. The planning is then performed for times k + m,
m = 1, 2, . . . , M . In the inequalities in (7), we have not
yet included the decision variables to indicate the transfer of
belief state from time step k to time step k + 1 (i.e m = 0
tom = 1). This is done by introducing L additional decision
variables dl0,l,1 where l0 is the currently active leader node.
However, the 3 inequalities (7) collapse to the equality

bl′,1 − dl0,l′,1 = 0 (8)

since we do know the currently active leader node i.e.b l0,m =
1 form = 0.
Note that the sensor scheduler at each planning step se-

lects only 1 leader node. This requirement is represented by
M equality constraints

L∑
l=1

bl,m = 1 ∀ m. (9)

To now formulate the objective function, we make the fol-
lowing definitions.

al,m � [al,1,m al,2,m . . . al,S,m]T (10a)
am � [aT

1,m . . . aT
L,m]T (10b)

bm � [b1,m b2,m . . . bL,m]T (10c)
dl,m+1 � [dl,1,m+1 dl,2,m+1 . . . dl,L,m+1]T (10d)

Define

c1
l � [c1

l,1 c1
l,2 . . . c1

l,L]T

c2
l � [c2

l,1 c2
l,2 . . . c2

l,L]T ,

where c2
l,s and c2

l,l′ are described in Section 3.
Let all the unknown binary variables defined in (10) above

be denoted by a vector Γ. The overall objective function
therefore becomes

f(Γ) ≡
M∑

m=1

L∑
l=1

(c1
l )

T al,m +
M−1∑
m=1

L∑
l=1

(c2
l )

T dl,m+1+

(c2
l0

)Tdl0,1. (11)

4. FORMULATION OF TRACKING ERROR
CONSTRAINTS

For the LNS problem, we constrain the tracking error for each
planning step m = 1, 2, . . . , M . Let the predicted error co-
variance matrix for planning step m in an M step planning
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horizon and time step k + m i.e. Pk+m|k+m−1 be denoted
as Pm− and the updated error covariance matrix Pk+m|k+m

be denoted as Pm+. We know that Pm− and Pm+ can be
computed recursively as:

Pm+ =

(
P−1

m− +
L∑

l=1

S∑
s=1

al,s,mJs,m

)−1

(12)

where Js,m = HT
s,mR−1

s Hs,m with

Hs,m =
∂h(x,xs)

∂x

∣∣∣∣
x=Fm x̂k|k

.

Let ρT,m be the tracking error threshold for planning stepm.
The tracking error constraints therefore are:

gm(am) ≡ ρ(am)− ρT,m ≤ 0 m = 1, 2, . . . , M (13)

where ρ(am) � tr1,2(Pm+). Here, tr1,2(·) represents the
trace of the submatrix formed by rows 1 and 2 and columns 1
and 2 of the matrix (·).

5. SOLVING THE LNS PROBLEM USING OUTER
APPROXIMATION

For the LNS problem, we formulate an INLP problem
PINLP−LNS to minimize (11) i.e. the sensor usage and
communications cost subject to tracking error constraints
(13). The INLP problem is solved using OA [3], which re-
quires that the objective function f and the constraints gm

be convex in order to guarantee a global solution. f for the
LNS problem is linear and hence convex. In [4] we show that
gm can be made a convex function of the relaxation of am if
Q = 0. WithQ = 0, Pm+ is given as [4]:

Pm+ =
((

FmP0+(FT )m
)−1 +

m∑
t=1

L∑
l=1

S∑
s=1

al,s,m

(
(FT )m−t

)−1
Js,m(Fm−t)−1

)−1

(14)

For tracking applications whereQ = 0 is a poor assumption,
one can hedge against the use of Q = 0 by replacing ρT,m

with ρT,m(1− ε)m where 0 < ε 
 1.
The solution to PINLP−LNS provides the non-myopic

sensor schedule over theM step planning horizon. The com-
plete INLP formulation PINLP−LNS of the LNS problem is

min
Γ

f(Γ)

subject to constraints (5), (7), (8), (9) and (13).

The master problem at the pth iteration i.e. Pp
MILP−LNS is:

min
Γ

ζ

subject to ζ ≤ Bp
U

ζ ≥ ∑M
m=1

∑L
l=1(c

1
l )

T al,m +
∑M−1

m=1∑L
l=1(c

2
l )

T dl,m+1 + (c2
l0

)Tdl0,1

0 ≥ ρ(ai
m)− ρT,m + [∇ρ(ai

m)]T

(am − ai
m) ∀ m, ∀i ∈ Ξp

F or Ξ
p
I

and constraints (5), (7), (8), (9), and (13).
Γ ∈ {0, 1}�(Γ), ζ ∈ R

where (See [4] for more details)

∇ρ(ai
m) =

[
∂ρ(ai

m)
∂a1,1,1

. . .
∂ρ(ai

m)
∂aL,S,M

]T

,

�(·) denotes the dimension of the vector (·) and ΞF and ΞI

are the sets that contain the feasible and infeasible solutions
to PINLP−LNS. The complete OA algorithm therefore pro-
ceeds as shown in Table 1.
The solution to the OA problem above gives the leader

node lm to be used along with the sensor node subset Sm

at each planning step m. The selected sensors transmit the
measurements to leader node which then updates the target
state density. After the M step sensor schedule is executed,
the entire process of planning and execution is repeated.

Initialization: Γ0 = 0, p = 0,Ξ−1
F = ∅,Ξ−1

I = ∅, B0
U =

∞.
Repeat

1. Linearize (13) about Γp (see 3rd constraint in
P

p
MILP−LNS) and set Ξ

p
F = Ξp−1

F ∪ {p} orΞp
I =

Ξp−1
I ∪ {p} appropriately.

2. If gm(Γp) ≤ 0, ∀ m and f(Γp) ≤ Bp
U , set Γopt =

Γp and Bp+1
U = f(Γp).

3. Solve P
p
MILP−LNS to find the solution Γp+1. Set

p = p + 1.

Until (Pp
MILP−LNS is infeasible)

Table 1. OA algorithm for the LNS problem.

6. SIMULATION RESULTS

We perform simulations for tracking a target in a sensor net-
work consisting of S = 6 bearing sensors and L = 2 leader
nodes as shown in Figure 1. S5 and S6 also behave as the
leader nodesL1 and L2 respectively. All sensors have a prob-
ability of detection PD = 1 and do not give any false alarms.

2543



300 200 100 0 100 200 300

1200

1000

800

600

400

200

0

200

x (m)

y 
(m

)

S3

S2

S1

S6

L1

S4

L2

S5

     leader node

     sensor node

Fig. 1. Simulation Scenario for the
LNS problem. {S1,S2,S3,S4,S5,S6}
are the sensor nodes and {L1,L2} are
the leader nodes.
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Fig. 2. RMSE plots for M = 3 and
different values of Wp with ρT,m =
289(1− ε)m.
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Fig. 3. RAE plots for M = 1 and
M = 3 and different values ofWp with
ρT,m = 289(1− ε)m.

The initial target state parameters are x0 = [−300 13 0 −
21] and P0|0 = diag{1000 50 1000 50} and it travels from
left to right for a period of 40 seconds. Also, the initial target
belief state is held by L1. The other parameters used are:
q = 1, Δt = 1, Rs = 0.03, ∀ s and ε = 0.03. We solve
P

p
MILP−LNS using the software lpsolve available freely at
[5].
The target state Root Mean Square Error (RMSE) ob-

tained by the Particle filter (i.e.PF-RMSE) and the predicted
RMSE (i.e. PRMSE) obtained from (13) (averaged over 500
Monte Carlo (MC) runs) is given in Figure 2 for planning
horizon lengthM = 3, with ρT,m = 289 and different values
ofWp, where an increasingWp indicates an increasing cost to
transfer target belief. The plot forM = 1 is similar to Figure
2 and is not shown.
Figure 3 is the plot for Running Average Energy (RAE)

[2] against time index k for M = 1 and M = 3 for differ-
ent values ofWp averaged over 500MC iterations and shows
that significant energy savings are accrued by planning over a
M = 3 step (non-myopic) planning horizon as compared to
a M = 1 step (myopic) planning horizon. The accrued en-
ergy savings is because the belief state is typically transferred
from L1 to L2 in more simulation runs with M=3 than with
M=1; the transfer leads to improved energy performance later
in a simulation run. The number of transfers from L 1 to L2

in a 500 simulation run for different values ofM andWp are
shown in Table 2.

7. CONCLUSIONS

We have formulated a NMSS problem for a distributed sensor
network as an INLP problem to minimize the total sensor us-
age and communications cost over anM step planning hori-
zon subject to tracking error constraints at each planning step.
We have provided an efficient formulation with mostly linear
constraints (apart from the tracking error constraints). Such
a formulation was found to be solved much faster using OA

M Wp Number of Belief
transfers for ρT,m = 289(1− ε)m

3 79
1 5 4

7 0
3 412

3 5 178
7 68

Table 2. Number of times the target belief was transferred
from L1 to L2 in a 500 run simulation.

than using the efficient search technique provided in [2].
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