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Abstract-This paper studies the energy-constrained MMSE 
decentralized estimation problem with the best-linear-unbiased- 
estimator fusion rule, under the assumptions that i) each sensor can 
only send a quantized version of its raw measurement to the fusion 
center (FC), and ii) exact knowledge of the sensor noise variance is 
unknown at the FC but only an associated statistical description is 
available. The problem setup relies on maximizing the reciprocal of 
the MSE averaged with respect to the prescribed noise variance 
distribution. While the considered design metric is shown to be 
highly nonlinear in the local sensor transmit energy (or bit loads), 
we leverage several analytic approximation relations to derive a 
associated tractable lower bound; through maximizing this bound a 
closed-form solution is then obtained. Our analytical results reveal 
that sensors with bad link quality are shut off to conserve energy, 
whereas the energy allocated to those active nodes is proportional to 
the individual channel gain. Simulation results are used to illustrate 
the performance of the proposed scheme. 

Index Terms: Decentralized estimation; Sensor networks; Energy 
efficiency; Quantization; Convex optimization. 

I. INTRODUCTION 

  Low energy/power cost is a critical concern for various 
application-specific designs of sensor networks [15], [16]. In 
the decentralized estimation scenario, wherein each sensor can 
transmit only a compressed version of its raw measurement to 
the fusion center (FC) owing to bandwidth and power 
limitations, several energy-efficient estimation schemes have 
been reported in the literature [1], [7], [10], [11], [13], [14]. 
Since the transmission energy is proportional to the message 
length [2], [13], all these works are formulated within a 
quantization bit assignment setup, with the optimal bit load 
determined via the knowledge of instantaneous local sensor 
noise characteristics, e.g., the noise variance if the fusion rule 
follows the best-linear-unbiased- estimator (BLUE) principle [5,
chap. 6]. To maintain the estimation performance against the 
variation of sensing conditions, repeated update of the noise 
profile is needed: this inevitably incurs more training overhead 
and hence extra energy consumption. The design of distributed 
estimation algorithms independent of the instantaneous noise 
parameters remains an open problem [13, p-419]. Relying on 
partial noise variance knowledge in the form of the statistical 
distribution, the problem of minimizing total transmission 
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energy under an allowable average distortion level (measured in 
terms of a mean-square-error (MSE) based criterion averaged 
with respect to some prescribed statistical distribution) is 
recently considered in [11]. 

This paper complements the study of [11] by addressing the 
counterpart problem: how to find the optimal bit load which 
minimizes the average distortion under a fixed total energy 
budget. The main contribution of the current work can be 
summarized as follows: (i) while the design metric, in the form 
of the reciprocal of the MSE averaged with respect to the 
distribution, is shown in [11] to be highly nonlinear in the 
sensor bit load, we leverage several analytic approximation 
relations to derive an associated tractable low bound, (ii) by 
maximizing this lower bound the problem can be further 
formulated in the form of convex optimization which yields a 
closed-form solution. Our analytic results reveal that, toward 
utmost estimation accuracy under a limited energy budget, 
sensors with bad link quality should be shut off, and energy 
allocated to those active nodes should be proportional to the 
individual channel gain; a similar energy conservation policy is 
also found in the previous works [7], [11], [13]. Numerical 
simulation evidences the effectiveness of the proposed scheme: 
it outperforms the uniform allocation strategy in an 
energy-limited environment. 

II. SYSTEM SCENARIO 

Consider a wireless sensor network, in which N spatially 
deployed sensors cooperate with a FC for estimating an 
unknown deterministic parameter . The local observation at 
the ith node is 

i ix n , 1 i N ,           (2.1) 
where in  is a zero-mean measurement noise with variance 
2
i . Due to bandwidth and power limitations each sensor 

quantizes its observation into a ib -bit message, and then 
transmits this locally processed data to the FC to generate a 
final estimate of . In this paper the uniform quantization 
scheme with nearest- rounding [9], is adopted; the quantized 
message at the ith sensor can thus be modeled as 

i i im x q , 1 i N ,          (2.2) 
where iq  is the quantization error uniformly distributed with 

zero mean and variance 2 2 /(12 4 )i
i

b
q R  [9], where 

[ /2, /2]R R  is the available signal amplitude range common 
to all sensors. The adopted quantizer model (2.2) and the 
uniform quantization error assumption, though being valid only 
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when the number of quantization bits is sufficiently large [9], 
are widely used in the literature due to analytical tractability. 
Assuming that the channel link between the ith sensor and the 
FC is corrupted by a zero-mean additive noise iv  with 

variance 2
v  The received data from all sensor outputs can 

thus be expressed in a vector form asa

1 1 1 1
: : :

1 1T T T TT
N N N Ny y n n q q v v

n q v
,

                                               (2.3) 
where ()T  denotes the transpose. This paper focuses on linear 
fusion rules for parameter recovery. More specifically, by 
assuming that the noise components ,{ , }n q v  in (2.3) are 
mutually independent and the respective samples in ’s, iq ’s,
and iv ’s are also independent across sensors, the parameter 
is retrieved via the BLUE [5, p-138] scheme via 

1

2 2 2 2
1 1

1ˆ
4 4i i

N N
i

b b
i ii v i v

y ; (2.4) 

the incurred MSE is thus [5, p-138]  
1

2

2 2
1

1ˆ
4 i

N

b
i i v

E , 2: /12R . (2.5) 

A commonly used statistical description for sensing noise 
variance is [7], [13]: 

2
i iz , 1 i N ,      (2.6) 

where  models the network-wide noise variance threshold, 
 controls the underlying variation from the nominal 

minimum, and 2
1iz  are i.i.d. central Chi-Square 

distributed random variables each with degrees-of-freedom 
equal to one [6, p-24]. The proposed energy-constrained 
MMSE decentralized estimation scheme is based on the noise 
variance model (2.6) and is discussed next. 

III. MAIN RESULTS 
A. Problem Setup 

We assume that the ith sensor sends the ib -bit message im

by using QAM with a constellation size 2 ib . The consumed 
energy is thus [2], [13],  

2 1ib
i iE w  for some iw , 1 i N ;   (3.1) 

the energy density iw  is defined as [2] 

: ln 2/i
i i bw d P ,             (3.2) 

in which  is a constant depending on the noise profile, id

is the distance between the ith node and the FC, i  is the ith
path loss exponent, and bP  is the target bit error rate assumed 
common to all sensor-to-FC links. With (2.5) and (3.1), the 
energy allocated to the ith sensor is thus determined by the 
number of quantization bits ib . For a fixed set of sensing noise 

variances 2
i ’s, the problem of MMSE decentralized 

estimation, under an allowable total energy budget TE , can be 
formulated as 

a. As in [1], [7], and [13] we assume orthogonal channel access among 
all the sensor-to-fusion links, which can be realized via, e.g., TDMA or 
CDMA with orthogonal spreading. 

Minimize 
1

2 2
1

1
4 i

N

b
i i v

, s.t. 
1
2 1i

N
b

i T
i
w E ,

and 0ib , 1 i N ,                        (3.3) 
or equivalently, 

  Maximize 2 2
1

1
4 i

N

b
i i v

, s.t. 
1
2 1i

N
b

i T
i
w E

  and 0ib , 1 i N ,                      (3.4) 

where 0  denotes the set of all nonnegative integers. To 
obtain a universal solution irrespective of instantaneous noise 
conditions, we will consider the following optimization 
problem, in which the equivalent distortion cost function in (3.4) 
is instead averaged with respect to the noise variance statistic 
characterized in (2.6):  

       Maximize 
1

1
4 i

N

b
i i

p d
zz

z z ,

       s.t. 
1
2 1i

N
b

i T
i
w E , 0ib , 1 i N , (3.5) 

where 2: v  and 1: [ ]TNz zz  with ( )p z  denoting 
the associated distribution. To solve (3.5), the first step is to 
find an analytic expression of the equivalent mean MSE metric. 

Since 2
1iz  is i.i.d. and 2

1

1
( ) exp /2 ( )

2
p z z u z

z
[6, p-24], where ( )u z  denotes the unit step function, it can be 
shown that (see [12] for a proof)  

/2

0
1 1

1 1
4 2 4

i

i i

zN N

ib b
i ii i i

e
p d dz

z z zz
z z

( 4 )/22 4 /

4

bi
i

i

b

b

e Q
,              (3.6) 

where 
2 / 2

( ) :
2

t

x

e
Q x dt  is the Gaussian tail function. 

Based on (3.6), problem (3.5) can be equivalently rewritten as 

  Maximize 
( 4 )/2

1

4 /
2

4

bi
i

i

b
N

bi

e Q
,

 under 
1
2 1i

N
b

i T
i
w E , and 0ib , i .       (3.7) 

The optimization problem (3.7) appears rather formidable to 
tackle because the cost function is highly nonlinear in ib . In 
what follows we will propose an alternative formulation which 
is more tractable and can yield an analytic solution. 

B. Alternative Formulation 

  The proposed approach is grounded on the following 
approximation to ()Q  function [8, p-115]: 

2 / 2

1 1 2

1
( )

2 (1 ) 2

xe
Q x

x x
;   (3.8) 

the approximation (3.8) is quite accurate since the peak relative 
error is less than 1.2%  for 0x , and is almost identical to 
zero whenever 5x . Based on (3.8) together with some 
straightforward manipulations, the cost function in (3.7) can be 
well approximated by 
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( 4 )/2

1

21 11

4 /
2

4

1
.

(1 ) 4 4 2 4

bi
i

i

i i i

b
N

bi

N

b b bi

e Q

                                              (3.9) 
The main advantage of the approximation (3.9) is that it can 
lead to an associated lower bound in a more tractable form; 
through otherwise maximizing this lower bound we can 
eventually obtain a closed-form solution. More specifically, it 
can be shown that (see [12]) 

                           (3.10)

21 11

1 1
1

1 1

1

(1 ) 4 4 2 4

1

(1 ) 4 4

1 4
.

( )44

i i i

i i

i

ii

N

b b bi

N

b b
i

bN N

bb
i i

Based on (3.10) we will instead focus on maximizing the lower 
bound, and thus reformulate the optimization problem as 

 Maximize 
1

4
( )4

i

i

bN

b
i

, s.t. 
1
2 1i

N
b

i T
i
w E , and 

0ib , 1 i N .                           (3.11) 

To facilitate analysis we first observe that, since 0ib , it 

follows 
1 1
2 1 4 1i i

N N
b b

i i
i i
w w : this implies we can 

replace the total energy constraint in (3.11) by the following 
one without violating the overall energy budget requirement: 

1
4 1i

N
b

i T
i
w E .          (3.12) 

With the aid of (3.12) and by performing a change of variable 
with : 4 1ib

iB , the optimization problem becomes 

  Maximize 
1

1
( ) ( )

N
i

i i

B
B

,

subject to 
1

N

i i T
i
w B E , and 0iB , 1 i N . (3.13) 

In (3.13), the intermediate variable iB  is relaxed to be a 
nonnegative real number so as to render the problem tractable; 
once the optimal real-valued iB  (and hence ib ) is computed, 
the associated bit loads can be obtained through upper integer 
rounding, as in [7], [11], [13]. The major advantage of the 
alternative problem formulation (3.13) is that it admits the form 
of convex optimization and can moreover lead to a closed-form 
solution, as is shown next. 

C. Optimal Solution 

  Based on the standard Lagrainge techniques, the optimal 
solution to (3.13) can be obtained as follows (see [12] for 
detailed proof). Let us assume 1 2 Nw w w  without 
loss of generality, and define the function  

1

1
( ) :

N

T j
j K

N

K j
j K

E w
f K

w w
, 1 K N .  (3.14) 

Let 11 K N  be the unique integer such that 

1( 1) 1f K  and 1( ) 1f K ; if ( ) 1f K  for all 
1 K N , then simply set 1 1K  (the existence and 
uniqueness of such 1K  when otherwise is shown in [12]). 

Then the optimal solution pair ,opt opt
iB  is given by 

1 1

1

1
N N

opt
j T j

j K j K
w E w ,(3.15) 

and
                                     1

1

0, 1 1,

1
1 , .

opt
i

opt
i

i K

B
K i N

w

  (3.16) 

With 4 1ib
iB  and 2

v , the optimal bit load 
opt
ib  can be directly obtained from (3.16); the resultant average 

distortion level is thus (cf. (3.7)) 
2

1

1
( 4 )/ 2 2

2

4 /
2

4

optb opti
v i

opt
i

b
vN

bi K
v

e Q
MSE

                                             (3.17) 

IV. DISCUSSIONS AND SIMULATION

1. We note that the minimal achievable average MSE is 
attained whenever all the raw sensor measurements with 
infinite-precision are available to the FC (i.e., the case 
when ib , 1 i N ). Hence, by setting ib

in the mean MSE formula specified in (3.7), we have the 
following performance bound 

2

1

( )/ 2 2
min 2

2
( )/

( )
v

v
v

MSE Ne Q .

                                           (4.1) 
Formula (4.1) reveals the impacts of the noise model 
parameters  and  on the estimation performance. 
Specifically, it is easy to see from (4.1) that the minimal 
MSE increases with : this implies the estimation 
accuracy degrades as the sensing environment becomes 
more and more inhomogeneous. Furthermore, it can be 
checked that minMSE  also increases with the minimal 
noise power threshold . This is reasonable since a large 

 implies poor measurement quality of all sensor data, 
and hence a less accurate parameter estimate. We note that, 
although these facts are inferred based on the idealized 
distortion measure (4.1), a similar tendency is also 
observed for MSE  in (3.17) attained with sensor data 
quantization (see the numerical results below). 

2. Recall from (3.2) that the energy density factor iw  is 
proportional to the path loss gain id  (assuming i

throughout all links). Large values of iw , therefore, 
correspond to sensors deployed far away from the FC 
(with large id ), usually with poor background channel 
gains. In light of this point, the proposed optimal solution 
(3.16) is intuitively attractive: sensors associated with the 
1( 1)K th largest iw ’s are turned off to conserve energy. 

We note that a similar energy conservation strategy via 
shutting off sensors alone poor channel links is also found 
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in [7], [11], [13]. Also, we further note from (3.16) that, 
for those active nodes, the assigned message length is 
inversely proportional to iw : this is intuitively 
reasonable since sensors with better link conditions should 
be allocated with more bits (energy) to improve the 
estimation accuracy. 

3. We compare the simulated performance of the proposed 
solution (3.16) against the uniform energy allocation 
scheme with bit load determined through 

2 1 /ib
i Tw E N , 1 i N .       (4.2) 

In each run we simply choose i iw d  with 2 , and 

id ’s are uniformly drawn from the interval [1,10]  as in 
[13]. In the following experiments we set the number of 
sensors to be 200N , link noise 2 0.05v , and 
consider three different levels of total energy: 

1

N

T i
i

E w  with 0.25, 1, 3 , which respectively 

correspond to the low, medium, and high energy regimes. 
With fixed 2 , Figure 1-(a) shows the computed mean 
MSE as  varies from 0 to 8, whereas Figure 1-(b) 
depicts the MSE for fixed 2  and 0.5 8 . The 
results show that, as expected, the estimation accuracy 
improves as TE  increases. Also, the proposed solution 
(3.16) outperforms (4.2), especially when TE  is small; it 
is thus more effective in an energy-limited environment. 
We finally note that the simulated MSE increases with 
both  and : this coincides with the asserted facts in 
the previous discussions. Figure 2 further depicts the 
histogram of the computed bit loads; it appears that a large 
fraction of the active nodes are assigned with one or two 
quantization bits (hence with BPSK or 4-QAM 
modulations adopted). 
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Figure 1. Performance comparison of the proposed solution (3.16) with 

the uniform allocation scheme (4.2). 
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Figure 2. Histogram of the quantization bits. 
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