
DISTRIBUTED ITERATE-COLLAPSE INVERSION (DICI) ALGORITHM
FOR L−BANDED MATRICES

Usman A. Khan and José M. F. Moura

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213
{ukhan, moura}@ece.cmu.edu

ABSTRACT

In this paper, we present a distributed algorithm to invert L−banded
matrices that are symmetric positive definite (SPD), when the sub-
matrices in the band are distributed among several processing nodes.
We provide a distributed iterate-collapse inversion (DICI) algorithm
that converges, at each node, to the corresponding submatrices in
the inverse of the L−banded matrix. The computational complex-
ity of the DICI algorithm to invert an SPD L−banded n× n matrix
can be shown at each node to be independent of the size, n, of the
matrix. Local information exchange is carried out after each itera-
tion to guarantee convergence. We apply this algorithm to invert the
information matrices in a computationally efficient distributed im-
plementation of the Kalman filter and show its application towards
inverting arbitrary sparse SPD matrices.

Index Terms— Sparse matrices, Distributed algorithms, Matrix
inversion, Kalman Filtering, Large-scale systems

1. INTRODUCTION

Banded matrices are found frequently in signal processing, e.g., in
the context of discretization of partial differential equations govern-
ing a random field and autoregressive or moving average image mod-
eling. When they are constrained to be symmetric positive definite
(SPD) matrices, they are the inverses of the covariance matrices of
causal or non-causal Gauss-Markovian random processes [1]. Fur-
thermore, in linear algebra, solving a sparse large linear system of
equations is a well studied problem, where a sparse matrix inverse is
to be calculated. By employing matrix reordering algorithms [2], we
can convert sparse SPD matrices to banded SPD matrices. Hence,
computing the inverse of banded matrices efficiently is an important
problem both in signal processing and linear algebra.

The direct inverse of banded matrices can be computed centrally
but that requires extensive storage, communication, and computa-
tion. Algorithms to compute direct inverses include Gauss-Jordan
elimination. Most inversion algorithms for SPD matrices involve a
Cholesky factorization that is efficient on a single processor imple-
mentation as long as computation power and memory requirements
are within limits. Incomplete Cholesky factorization is also an im-
portant method for solving large sparse SPD linear systems [3].

This work was partially supported by the DARPA DSO Advanced
Computing and Mathematics Program Integrated Sensing and Processing
(ISP) Initiative under ARO grant # DAAD 19-02-1-0180, by NSF under
grants # ECS-0225449 and # CNS-0428404, by ONR under grant # MURI-
N000140710747, and by an IBM Faculty Award.

Z(l) Z

S=Z-1

Z(2)

Z(N)

S(N)

S(2)

Z(1)

Z =

S(1)

Fig. 1. Composition of the L−band of Z from the local matri-
ces, Z(l), shown in the left figure. Centralized Implementation of
S = Z−1, shown in the right figure.

Recursive inversion of banded matrices can be found in [4, 5]. In
[4], a forward-backward recursion algorithm is provided to compute
the inverse of a tridiagonal matrix, which involves a forward recur-
sion to start from the first node and reach the last node, and a back-
ward recursion that proceeds in the opposite direction. Since, the
iterations involve serial communication of the local matrices among
all the nodes, the associated latency is impractical, besides requiring
an inordinate amount of communication.

We study the banded matrix inversion when the band of the ma-
trix is distributed among several processing nodes, see figure 1 (left),
and hence a distributed algorithm with local communication is in-
trinsic to the nature of the problem. This arises in problems where
the information is distributed in a large geographical region, e.g.,
through distributed sensing, and hence the matrix to be inverted is
distributed among the sensors in the system [6]. On the other hand,
we may be interested in solving a very large linear system of equa-
tions on a multiprocessor machine where parallelizing the algorithm
is essential in load balancing and its real-time implementation, and
hence the matrix is distributed among different available processors.
Typically for such problems L � n.

Consider Z to be an L−banded matrix (we refer to a matrix as an
L-banded matrix (L ≥ 0), if the elements outside the band defined
by the Lth upper and the Lth lower diagonal are zero) and we are
interested in computing S = Z−1, when the non-zero submatrices
along the main diagonal of Z are distributed among N processing
nodes. This is shown in figure 1 (left). The lth node has a diagonal
submatrix, Z(l), termed as the local matrix at node l. We note here
that the L−band of Z should be preserved among all the nodes, i.e.,
each element in the L−band of Z must be a member of at least
one local matrix, Z(l). Collecting the complete matrix at a central

25291-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

z11 z12 0
z12 z22 z23

z23 z33 z34
z34 z44 z45

0 z45 z55

-1

=

s11 s12 s13 s14 s15
s12 s22 s23 s24 s25
s13 s23 s33 s34 s35
s14 s24 s34 s44 s45
s15 s25 s35 s45 s55

=
-1

=

Fig. 2. DICI algorithm on a 5× 5 L = 1−banded matrix Z.

location, as shown in figure 1 (right), is infeasible because of the
extensive computation and communication requirements.

We present a distributed iterate-collapse inversion algorithm, named
DICI (pronounced die-see to sound like spicy), for L−banded SPD
matrices. We point out here that the DICI algorithm will give the
diagonal submatrices, S(l), that lie in the L−band of S at the ap-
propriate nodes. For the non L−band elements in S, we provide a
theorem to calculate them, with only local communication, from the
elements in the L−band of S. This process is also shown in figure 2
for a 5× 5 L = 1−banded matrix Z.

The DICI algorithm is divided into an iterate step and a col-
lapse step. The iterate step is implemented on the elements inside
the L−band. We then employ a non-linear collapse step on the non
L−band elements that exploits the structure of the matrix Z and
reduces the computation requirements of the ordinary Jacobi algo-
rithm. It is noteworthy here that when Jacobi or Gauss-Seidel type
(block) iterative algorithms [7, 8] are used to solve linear system of
matrix equations (ZS = B, for S,B matrices), they implement n
linear system of vector equations (Zs = b, for s,b vectors). On the
other hand, the DICI algorithm employs a non-linear collapse step
by exploiting the structure of the matrix Z. This collapse step makes
the computation complexity of the DICI algorithm independent of
the size, n, of the matrix. The algorithm scales efficiently when
compared to O(n3) direct inversion algorithms and O(n2) fast in-
version algorithms, e.g., [4].

We summarize the rest of the paper. Section 2 presents the
Jacobi algorithm with its extensions to matrices, section 3 gives
the distributed implementation of the Jacobi algorithm. We present
the DICI algorithm in section 4, and its application to distributed
Kalman filter in subsection 5.1 and to sparse matrix inversion in sub-
section 5.2. Section 6 concludes the paper.

2. JACOBI ALGORITHM

The Jacobi algorithm [7] is an iterative algorithm to solve

Zs = b (1)

for s, by successive substitution, where s ∈ R
n and b ∈ R

n are vec-
tors, and Z ∈ R

n×n is an L−banded matrix. Let M = diag(Z), i.e.,
the diagonal matrix with the main diagonal of Z and zero elsewhere.
The Jacobi algorithm [7] is given by

sk+1 = Psk + M−1b, k ≥ 0 (2)

where k is the iteration number and the multiplier matrix, P, is

P = M−1 (M− Z) . (3)

Note that since Z is L−banded, the multiplier matrix, P, in (3), is
also L−banded. It can be shown that the vector s is the fixed point

solution of the iteration in (2). We can extend (2) to solve

ZS = B (4)

for S, where S ∈ R
n×n and B ∈ R

n×n are now matrices, by
writing (2) in matrix form as follows.

Sk+1 = PSk + M−1B (5)

Solving for,
S = Z−1, (6)

is equivalent to letting B to be an n × n identity matrix, I. The
iterative algorithm for the inverse of the matrix Z now becomes,

Sk+1 = PSk + M−1. (7)

3. DISTRIBUTED JACOBI ALGORITHM

When the matrix Z is L−banded and its local matrices, Z(l), are
distributed among N nodes, as shown in figure 1 (left) , the Jacobi
algorithm, (7), can be distributed as follows. The iteration for the
ij-th element, sij , in Sk+1 can be written at time k + 1 as

sij = pis
j
k (i �= j) (8)

sij = pis
j
k + mi (i = j) (9)

where pi is the ith row of the multiplier matrix, P, and sj
k is the jth

column of the matrix Sk, and mi is the ith element at the diagonal in
M−1. Since, the multiplier matrix, P, is L−banded, we note that the
only non-zero elements in the ith row, pi, of P are located at most at
the i−L, . . . , i, . . . , i+L locations and can be represented by {pi}q ,
where q goes from i−L, . . . , i, . . . , i+L. These non-zero elements
pick the corresponding elements, {sj

k}q , in the jth column, sj
k, of

Sk, from (8) or (9). Based on the dimensions of the submatrix at
the lth node, S(l), the elements {sj

k}q lie in the submatrices S(l−1),
S(l), and S(l+1) and hence can be communicated to node l from the
neighboring nodes l − 1 and l + 1, see figure 2.

Thus, for L−banded matrices, Z, the iterative algorithm to find
its inverse in (7) can be distributed with communication only from
the neighboring nodes. To initialize the algorithm, we have

P(l) =
�
M(l)

�−1 �
M(l) − Z(l)

�
, (10)

S
(l)
0 =

�
Z(l)

�−1

. (11)

Drawbacks for distributed Implementation: Since the inverse, S,
of the L−banded matrix, Z, is, in general, full, we are required to
iterate on the elements that do not lie in the L-band of S as can be
seen from (7). This can be shown by writing out the iteration on the
L−band element s45,k+1 from (8), see figure 2 for L = 1−banded
matrix, Z,

s45,k+1 = p43s35,k + p44s45,k + p45s55,k. (12)

Equation (12) shows that the iterations on an L−band element s45

requires a non L−band element s35. The iterations on the non
L−band element s35 from (7) can be written as

s35,k+1 = p32s25,k + p33s35,k + p34s45,k. (13)

The computation in (13) involves s25,k that lies in the non L−band
of Sk, iterating on which, in turn, requires another non L−band ele-
ment, s15,k, and so on. Computing the elements outside the L−band,

2530

thus, requires iterating on all the elements in a single row of S, at the
node corresponding to that row. Hence, a single iteration of the al-
gorithm, although requiring only local communication, sweeps the
entire rows in S at the corresponding nodes and the complexity of
this approach scales with the size, n, of the linear system.

4. DISTRIBUTED ITERATE-COLLAPSE INVERSION
(DICI) ALGORITHM

To overcome iterating on the entire row of Sk at the corresponding
nodes, we present the DICI algorithm. The algorithm is a 2−step
algorithm with an iterate step and a collapse step. Before explaining
the steps, we present the following theorem for L = 1, [5]. Its
generalization to L > 1 can be found in Theorem 3 in [5].

Theorem 1. Let Z be L = 1−banded and S = Z−1. Then any non
L−band element, sij , |i − j| > L, can be written as a function of
the elements inside the L−band.

sij = si,j−1 (si+1,j−1)
−1 si+1,j (14)

If any of the elements in (14) is a non L−band element, then it
is written first in terms of L−banded elements using (14). The DICI
algorithm is divided into the following two steps.

Iterate step: The iterate step is implementing (8)–(9) but only
for the elements inside the L−band of Sk, i.e., ij-th element when
|i − j| ≤ L. Each node l iterates on the elements of its own local
matrix, S(l). To accomplish this, they need elements of S(l−1) and
S(l+1) and so they are required to communicate with the neighboring
nodes (node l − 1 and node l + 1).

To start the iterate step, we need the initial conditions that are
provided in (10)–(11). We also set the non L−band elements re-
quired in implementing the iterate step, see (12), to be zero, i.e.,

{sij}|i−j|>L = 0. (15)

Each lth node performs an initial communication step where the rel-
evant elements of the neighboring multiplier matrices, P(l−1) and
P(l+1), required for the iterate step are communicated. Note that
these elements remain fixed throughout the rest of the algorithm.

Collapse step: The collapse step is to use (14) for the computa-
tion of non L-band elements required to implement (8) of the iterate
step. When we use equation (14), we are not required to do the entire
row sweep, hence distributing the algorithm completely.

Theorem 1 is only valid when S is the inverse of an L−banded
matrix. But at each k, Sk is not the inverse of an L−banded matrix,
instead it is converging to S, which is the inverse of an L−banded
matrix. Thus we call this step a collapse step, since it collapses Sk

to the space of matrices having an L−banded inverse.
Convergence: We note that the centralized Jacobi algorithm for ma-
trix inversion, in (7), has the error process, Ek+1, given by

Ek+1 = Sk+1 − S,

= PEk. (16)

Thus, the error process goes to 0 if the spectral radius of P is less
than 1, ||P|| < 1. Since the distributed Jacobi algorithm has no ap-
proximation involved in going from (7) to (8)–(9), the convergence
criteria are the same.

Let �Ek+1 be the error process of the DICI algorithm. We show
the convergence of the DICI algorithm numerically by plotting the
difference error process, ΔEk+1, defined as

ΔEk+1 = �Ek+1 −Ek+1, (17)

0 100 200 300 400 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

DICI iterations, k

Δ
E k+

1

||P|| = 0.998
||P|| = 0.993
||P|| = 0.97
||P|| = 0.94
||P|| = 0.82
||P|| = 0.67

Fig. 3. Trace of ΔEk+1, plotted versus the DICI iterations for sev-
eral different ||P|| (curves are plotted in the same order from top to
bottom as ||P|| appears in the legend).

in figure 3. Since ΔEk+1 goes to zero (we simulated for several val-
ues of ||P||), from figure 3, the DICI algorithm converges whenever
Ek+1 goes to zero.

5. APPLICATIONS

We provide two applications for the DICI algorithm below.

5.1. Distributed Kalman filtering

Distributed Kalman filters are very important especially when we
have to estimate large n−dimensional dynamical systems and their
observations are distributed geographically, e.g., US power grid mon-
itored by a sensor network. With n of the order of 106 to 108 con-
ventional distributed approaches become practically infeasible. A
computationally efficient Kalman filter is implemented by spatially
decomposing the system into nl-dimensional local node (or sensor)-
driven models, see [9], where nl � n. Local Kalman filters of much
lower dimension, nl, are now implemented at each node (sensor) l.
Shared observations and estimates across different local models are
fused using bipartite fusion graphs, see [6]. For the local prediction
step in the local Kalman filters, it can be shown that we are required
to compute the local error covariance matrices, S(l), from the local
information matrices, Z(l), see [6]. The relationship between their
centralized counterparts (centralized error covariance matrix, S, and
the centralized information matrix, Z) for n = 5 is depicted in fig-
ure 2, where the information matrices, Z, are approximated to be
L−banded (equivalent to approximating the Gaussian error process
of the Kalman filter to be Gauss-Markovian of Lth order, see [4]).
We employ the DICI algorithm to compute S(l) from Z(l). The sim-
ulation results for the distributed Kalman filter implementation with
a 5−dimensional system and nearest neighbor model dynamics em-
ploying DICI algorithm to compute the inverse of the local informa-
tion matrices is shown in figure 4. Convergence of the DICI algo-
rithm can be verified as the trace of the error covariance matrix in
the centralized Kalman filter with L = 1−banded approximation on
the centralized information matrix can be seen to be exactly overlap-
ping with the trace of the error covariance matrices in the distributed
Kalman filter implementation.

2531

0 200 400 600 800 1000
0

1

2

3

4

5

Kalman filter iterations, t

tr(
 S

t)

Fig. 4. Kalman filter with L = 1−banded approximation on the
information matrices, Zt. Trace of the error covariance matrix, St,
is plotted for the centralized Kalman filter (-�-) and the distributed
Kalman filter (-©-).

5.2. Sparse Matrix Inversion

We show the extension of the DICI algorithm to invert sparse SPD
matrices after applying matrix reordering algorithms to the sparse
SPD matrices. These algorithms apply matrix bandwidth reduc-
tion methods, e.g., Reverse Cuthill Mckee (RCM) algorithm reorder-
ing [2], such that the sparse SPD matrices are converted to banded
matrices by permutation of rows and columns.

Consider Z to be an arbitrary sparse SPD matrix. We can apply
the RCM algorithm to convert Z into an L−banded matrix, Z. The
general reordering looks like

Z = PZPT . (18)

The inverse of Z is given by

Z
−1

= PT Z−1P. (19)

We can parallelize the computation of Z−1 on a multiprocessor ma-
chine using the DICI algorithm and computing Z

−1 reduces to low
order computation at each processor (node) l, and two matrix multi-
plications. The matrix P is a permutation matrix and multiplying by
it is a permutation of rows (and columns).

Remarks: It may seem that pre- and post-multiplication with
the permutation matrix, P, in (19), has to be implemented at a cen-
tral location. In fact, this step can also be distributed by realizing
that the permutation of rows and columns can be implemented by
imposing a communication graph on the nodes using the structure of
the permutation matrix, P. Hence, P, determines the communica-
tion topology required by the nodes to communicate the appropriate
elements among the nodes.

We show the result of the RCM algorithm on a 100×100 sparse
SPD matrix, Z, shown in figure 5(a), which is converted to a L =
12−band matrix, Z, shown in figure 5(b), by the permutation ma-
trix given by the RCM algorithm [2]. Depending on the number of
nodes, the L = 12−banded matrix, Z, shown in figure 5(b), is di-
vided into overlapping local matrices. Note that the minimum size
of the local matrix is L + 1× L + 1, which in the case (L = 12) is
a 13× 13 matrix.

6. CONCLUSIONS

We present a distributed inversion algorithm, DICI, for banded SPD
matrices that is distributed both in terms of communication and com-

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(a) A random sparse SPD
matrix, Z, with sparseness
density 0.03. Non-zero ele-
ments are shown in black.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(b) L = 12−banded re-
ordering of Z, shown in fig-
ure 5(a), using RCM algo-
rithm [2].

Fig. 5. RCM algorithm

putations. Each node does local communication and performs com-
putation of order O(L4t) with only local matrices, where L << n
and t is the number of iterations of the DICI algorithm. The algo-
rithm has significant importance when applied to problems where
partial information about a global phenomenon is available at the
nodes and where parallelized solutions are sought under resource
constraints for load balancing.

7. REFERENCES

[1] N. Balram and J. M. F. Moura, “Noncausal Gauss Markov ran-
dom fields: Parameter structure and estimation,” IEEE Trans. on
Information Theory, vol. 39, no. 4, pp. 1333–1355, Jul. 1993.

[2] E. Cuthill J. McKee, “Reducing the bandwidth of sparse sym-
metric matrices,” in Proceedings of the 24th National Confer-
ence, New York, 1969, pp. 157–172.

[3] G. Golub and C. Van Loan, Matrix Computations, The Johns
Hopkins University Press, Baltimore, MD, 1996.

[4] A. Kavcic and J. M. F. Moura, “Matrices with banded in-
verses: Inversion algorithms and factorization of Gauss-Markov
processes,” IEEE Trans. on Information Theory, vol. 46, no. 4,
pp. 1495–1509, Jul. 2000.

[5] A. Asif and J. M. F. Moura, “Inversion of block matrices with
L-block banded inverse,” IEEE Trans. on Sig. Proc., vol. 53, no.
2, pp. 630–642, Feb. 2005.

[6] U. A. Khan and J. M. F. Moura, “Distributing the Kalman filters
for large-scale systems,” Submitted to IEEE Trans. on Signal
Processing, http://arxiv.org/pdf/0708.0242.

[7] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Compu-
tations, Prentice Hall, Englewood Cliffs, NJ, 1989.

[8] V. Delouille, R. Neelamani, and R. Baraniuk, “Robust dis-
tributed estimation using the embedded subgraphs algorithm,”
IEEE Trans. on Sig. Proc., vol. 54, pp. 2998–3010, Aug. 2006.

[9] U. A. Khan and J. M. F. Moura, “Model distribution for dis-
tributed Kalman filters: A graph theoretic approach,” in 41st
Asilomar Conference on Signals, Systems, and Computers, Pa-
cific Grove, CA, Nov. 2007, accepted for publication.

2532

