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ABSTRACT

We consider the problem of distributed detection in a large
wireless sensor network. An adaptive data fusion scheme,
group-ordered sequential probability ratio test (GO-SPRT), is
proposed. This scheme groups sensors according to the infor-
mativeness of their data. Fusion center collects sensor data se-
quentially, starting from the most informative data and termi-
nates the process when the target performance is reached. To
analyze the average sample number, we establish the asymp-
totic equivalence between GO-SPRT, a multinomial experi-
ment, and a normal experiment. Closed-form approximates
are obtained. Our analysis and simulations show that, com-
pared with fixed sample size test and traditional sequential
probability ratio test (SPRT), the proposed scheme achieves
significant savings in the cost of data fusion.

Index Terms— Distributed detection

1. INTRODUCTION

We consider distributed detection in a wireless sensor net-
work with one fusion center. Sensors take measurements, pro-
cess the observations locally, and send the local summaries to
the fusion center. The fusion center combines the local sum-
maries received from sensors to reach a global decision. To
reduce the communication cost of such distributed detection
systems, two techniques have been explored in recent years:
decentralized sequential detection [1, 2] and censoring [3–5].
In this paper, we propose a group-ordered sequential prob-

ability ratio test (GO-SPRT). Inspired by censoring schemes,
we group sensors according to the informativeness of their
data, with more informative data being collected first. Similar
to sequential detection, the data collection process is termi-
nated once the target performance is reached. The average
sample number of GO-SPRT is analyzed. Our analysis and
simulation show that this scheme achieves significant savings
of communication cost over both fixed sample size tests and
traditional distributed sequential detectors.
The rest of this paper is organized as follows. In Section 2,

the signal model is described. The proposed scheme is pre-
sented in Section 3. In Section 4, we establish the asymptotic

equivalence between a multinomial experiment and a multi-
variate normal experiment and obtain an approximate to the
average sample number needed in GO-SPRT. In Section 5, we
apply GO-SPRT to the problem of signal detection in Gaus-
sian noise and present simulation results. Finally, we reach
our conclusion in Section 6.
Notation: Upper and lower case bold symbols will be used

to denote matrices and column vectors, respectively; f(n) =

O(g(n)) means lim sup
n→∞

∣∣∣ f(n)
g(n)

∣∣∣ < ∞; if 0 < lim inf
n→∞

∣∣∣ f(n)
g(n)

∣∣∣ ≤
lim sup

n→∞

∣∣∣ f(n)
g(n)

∣∣∣ < ∞, then we say f(n) = Θ(g(n)).

2. SIGNAL MODEL

We consider a distributed detection problem, where there are
two hypotheses on the state of the environment:

H0 :Xn ∼ P0(Xn), n = 1, . . . , N, (1)
H1 :Xn ∼ P1(Xn), n = 1, . . . , N, (2)

where Xn ∈ X contains the measurements taken by the nth
sensor. The observations at different sensors are assumed
to be independent given H0 or H1. With the communica-
tion constraint, the summary sent by a sensor must be se-
lected from a finite set of messages. Suppose the summary
sent by sensor n is Un = γn(Xn), where γn is the deci-
sion rule adopted by sensor n. We know from detection the-
ory that the optimal fusion center processing is to compute
the log-likelihood ratio (LLR) of the received messages U =
[U1, . . . , UN ]T :

γ0(U) =
N∑

n=1

log
P (Un|H1)

P (Un|H0)
, (3)

and compare it to an appropriate threshold. In this paper, we
assume that all sensors use an identical local decision rule,
which is asymptotically (for large N ) optimal [6].

3. GROUP-ORDERED SPRT

We consider a wireless sensor network, where all sensors
adopt an identical local decision rule γ : X �→ {1, . . . , 2K}.
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Based on its observation Xn, sensor n generates a summary
Un = γ(Xn). The distribution of Un is described by the
probability masses:

qk(Hj)
�
= P (Un = k|Hj), k = 1, . . . , 2K, j = 0, 1.

(4)
We define Γk

�
= {x ∈ X |γ(x) = k} as the set of observations

associated with the summary message k. Denote Sk as the set
of sensors, whose observations fall inside the region Γk, and
Nk

�
= |Sk| as the number of sensors in Sk. In this paper, we

assume that the following two conditions are satisfied:

Assumption 1: qk(H0) �= qk(H1) for some k;

Assumption 2: qk(Hj) > 0 for all k and j.

Assumption 1 ensures that the summary messages contain
some information about the state of the nature H and is sat-
isfied for all but trivial local decision rules. Assumption 2 is
also generally satisfied, except in the case of singular detec-
tion problems.
In a classical decentralized detection system, the fusion

center collects summary messages from all sensors. To re-
duce the large communication and energy costs needed to
collect all sensor summaries, we propose an adaptive fusion
scheme: Group-Ordered Sequential Probability Ratio Test
(GO-SPRT). In this scheme, the data collection process is
divided into multiple stages. Sensors belonging to S1 and S2

send their summaries to the fusion center in the first stage,
followed by the sensors in S3 and S4 in the second stage, and
so on. At the end of each stage, the fusion center computes
the global LLR based on the collected data. At the end of the
k-th stage, the fusion center knows N1, N2, . . . , N2k and can
compute the following global LLR

γ
(k)
0 (N) =

2k∑
i=1

Ni log
qi(H1)

qi(H0)
+

2K∑
i=2k+1

Ni log

∑2K
i=2k+1 qi(H1)∑2K
i=2k+1 qi(H0)

,

(5)
where we have denoted N �

= [N1, . . . , N2K ]T . The fusion
center compares γ

(k)
0 (N) with thresholds a < 0 < b. If

γ
(k)
0 (N) ≤ a, the fusion center stops collecting data and
chooses H0; if γ

(k)
0 (N) ≥ b, the fusion center chooses H1;

otherwise, the fusion center will start the data collection of
the next stage.
GO-SPRT reduces the communication cost in two ways:

i) it reduces the number of sensor transmissions, as demon-
strated in this paper; ii) at stage k, each sensor that transmits
needs only to send one bit indicating whether it belongs to
S2k−1 or S2k, instead of the 
log2(2K)� bits needed in the
traditional scheme.

4. AVERAGE SAMPLE NUMBER

To investigate the communication cost of GO-SPRT, we an-
alyze the average sample number (ASN) needed under this

scheme. Conditioned on Hj , the average sample number can
be written as

ASNj =

K∑
k=1

E

[
(N2k−1 + N2k)

k−1∏
i=0

1
{a<γ

(i)
0 (N)<b}

∣∣∣∣Hj

]
,

(6)
where 1A is the indicator function of the subset A. Con-
ditioned on Hj , N ∼ M(N ; [q1(Hj), . . . , q2K(Hj)]) is a
multinomial random vector. Direct evaluation of (6) is com-
putationally costly when N and K are large. To analyze the
behavior ofASNj , we rely on the asymptotic equivalence be-
tween a multinomial experiment and a normal experiment.

4.1. Asymptotic Equivalence with a Normal Experiment

Since the sensors in S1 and S2 always send their summaries,
ASNj = Θ(N), that is, the fraction of sensors that report
to the fusion center, εj

�
= ASNj/N , will not go to zero as

N grows. We will refer to εj as the fusion efficiency. The
following proposition provides an accurate approximation for
εj for large N . Its proof is lengthy and has been omitted
because of the space limit.

Proposition 1:

εj =
1

N
E

[
K∑

k=1

(Z2k−1 + Z2k)

k−1∏
i=0

1
{a<γ

(i)
0 (Z)<b}

]
+O(

1√
N

),

(7)
where Z = [Z1, . . . , Z2K ]T is a Gaussian random vector with
the same mean and covariance as N.

4.2. Single Boundary Crossing Approximation

The expectation in (7) involves a complicated multiple inte-
gral. To obtain a closed-form approximate for εj , we need
further simplification. Intuitively, if γ(j)

0 (Z) �∈ (a, b) for some
j > 0, then it is unlikely that γ(i)

0 (Z) ∈ (a, b) for some i > j.
Namely, the probability that γ(i)

0 (Z) will cross the boundaries
more than once is low. Motivated by this intuition, we inves-
tigate the following approximate:

ε̃j =
1

N

2K∑
k=1

Ej

[
Zk1

{a<γ
(�

k−1
2
�)

0 (Z)<b}

]
. (8)

The approximation error of this single boundary crossing ap-
proximation is given by the following proposition, the proof
of which is again omitted.

Proposition 2:

|ε̃j − ε̂j | = o

(
1

N c

)
(9)

for all c > 0, where

ε̂j =
1

N
E

[
K∑

k=1

(Z2k−1 + Z2k)
k−1∏
i=0

1
{a<γ

(i)
0 (Z)<b}

]
. (10)

2526



4.3. Closed-Form Approximation

From Propositions 1 and 2, we can see that εj can be ac-
curately approximated by (8), leading to a closed-form
approximation. To evaluate ε̃j , we note that under Hj ,
[Zk, γ

(� k−1
2 �)

0 (Z)]T is a Gaussian random vector. Its mean
is

μkj = [Nqk(Hj), (c(�
k−1
2 �))T

μj ]
T �

= [μkj(1), μkj(2)]T ,
(11)

where c(i) �
= [c

(i)
1 , . . . , c

(i)
2K ]T with

c
(i)
k =

⎧⎪⎨
⎪⎩

log qk(H1)
qk(H0)

1 ≤ k ≤ 2i,

log

∑2K

l=2i+1
ql(H1)∑2K

l=2i+1
ql(H0)

2i + 1 ≤ k ≤ 2K.
(12)

Its covariance matrix is

Σkj =

[
σ2

kj(1) ρkjσkj(1)σkj(2)

ρkjσkj(1)σkj(2) σ2
kj(2)

]
, (13)

where σ2
kj(1) = Nqk(Hj)(1 − qk(Hj)),

σ2
kj(2) = (c(�

k−1
2 �))T

Σjc(�
k−1
2 �), and

ρkj =
qk(Hj)(c(�

k−1
2 �))T [−μj + N(2 − qk(Hj))ek]

σkj(1)σkj(2)
,

(14)
with ek denoting a unit vector with the k-th entry equal to one.
After some algebra, we find

ε̃j = ε̄j + O

(
1√
N

)
, (15)

where

ε̄j =

2K∑
k=1

qk(Hj)

[
1 − Q

(
b − μkj(2)

σkj(2)

)
− Q

(
μkj(2) − a

σkj(2)

)]
.

(16)

4.4. Design of Local Decision Rule

In the above discussions, we have made no assumption on the
local decision rule γ we use to categorize the sensor observa-
tions and divide the sensors into groups. A natural design op-
tion is the likelihood ratio quantizer (LRQ), which is known
to be optimal for a large class of decentralized detection prob-
lems. Furthermore, we order the quantization cells such that∣∣∣∣log

q1(H1)

q1(H0)

∣∣∣∣ ≥ · · · ≥
∣∣∣∣log

q2K(H1)

q2K(H0)

∣∣∣∣ , (17)

which assigns higher priority to more informative data. We
assume no information on the prior probabilities of H1 and

H0, so the quantization thresholds should be chosen to mini-
mize max{ε0, ε1}. To reduce the computational cost in opti-
mizing the quantization thresholds, we rely on the person-by-
person optimization (PBPO) approach: in each iteration, we
update one threshold by keeping the other thresholds fixed
and finding the new threshold value that minimizes the cost
function.

5. SIGNAL DETECTION IN GAUSSIAN NOISE

In this section, we focus on the problem of signal detection in
Gaussian noise to illustrate the application of GO-SPRT and
its gain in fusion efficiency. Consider the following binary
hypothesis testing problem:

H0 :Xn = −θ + Wn, n = 1, 2, . . . , N,

H1 :Xn = θ + Wn, n = 1, 2, . . . , N, (18)

where θ > 0 is a constant signal and {Wn}N
n=1 is a sequence

of i.i.d. additive Gaussian noise samples with zero mean and
variance σ2. The local LLR at sensor n is Ln = 2θXn/σ2.
Quantizing Ln is therefore equivalent to quantizing Xn. We
will first consider the following uniform quantizer:

Γk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(K − 1)τ,∞) k = 1,
(−∞, (1 − K)τ) k = 2,
[(K − k+1

2 )τ, (K + 1 − k+1
2 )τ) k > 2 & k is odd,

[(−K − 1 + k
2 )τ, (−K + k

2 )τ) k > 2 & k is even,
(19)

where τ is a parameter to be chosen.
We apply the GO-SPRT algorithm, where we have set θ =

1, σ2 = 10, a = −b = −20, τ = 20/K and N = 2000. In
Fig. 1, we plot both the approximate average sample number
obtained using (16) and the results from Monte-Carlo simula-
tion. We observe that the analytical results fit the simulation
outcomes very well. Increasing the number of quantization
levels improves the efficiency of the GO-SPRT scheme. The
improvement is most significant when the number of quan-
tization levels increases from 16 to 24. The gain appears to
diminish as the number of quantization levels exceeds 100.
From Fig. 1, we observe that to obtain good efficiency

with uniform quantizer, the number of quantization cells 2K
needs to be large, which requires partitioning the data fusion
process into many stages and may lead to large overhead.
The necessary number of quantization cells can be reduced
by using a quantizer with PBPO thresholds. From Fig. 2, we
can see that person-by-person optimization of the quantiza-
tion thresholds leads to significant improvements in the fusion
efficiency.
We now compare the efficiency of the GO-SPRT with the

fixed sample size (FSS) test and the traditional SPRT. We as-
sume perfect quantization (no quantization error) for these
two tests. Suppose the target false alarm probability is PF0
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Fig. 1. Average Sample Number (under H1) versus Number
of Quantization Levels
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Fig. 2. Efficiency of GO-SPRT with Different Quantizers

and the target miss probability is PM0. From Wald’s ap-
proximation, we have a ≈ log(PM0/(1 − PF0)) and b ≈
log((1 − PM0)/PF0). The number of samples needed under
H1 for the optimal FSS test is

NFSS =
⌈
σ2[Φ−1(1 − PF0) − Φ−1(PM0)]

2/(4θ2)
⌉
. (20)

For a = −b = −20, we have PF0 ≈ PM0 ≈ 2.0612 × 10−9.
Given θ = 1 and σ2 = 10, we have NFSS = 346. For the
traditional SPRT, simulation shows that the average sample
number is approximately 102. On the other hand, simulation
shows that GO-SPRT with PBPO quantizer requires only 45.4
samples for K = 2 and 16 samples for K = 10. Therefore,
GO-SPRT with only a few quantization levels requires signif-
icantly fewer samples on average than both the FSS test and
the traditional SPRT with perfect quantization.
Since N is limited, GO-SPRT may need to be truncated.

However, under the above simulation setting, this effect is
negligible. To see this, consider the worst case where K = 1
with sensor n sending Un = −1 if Xn ≤ 0 and Un = 1 if

Xn > 0. Given H1, the truncation probability is

PT1 ≤
�N

2 + b

log
p
q

�∑
m=0

(
N

m

)
pN−m(1 − p)m

≤ q

p − q
(2q)N

(
p

q

)�N
2 + b

log
p
q

�

(21)

where q = Q
(

θ
σ

)
and p = 1− q. For the above set of param-

eters, this bound yields PT1 ≤ 9.5 × 10−24 for N = 2000.
Compared with the target error probabilities, we can see that
truncation has a minimal effect on GO-SPRT performance.

6. CONCLUSION

In this paper, we have developed a group-ordered sequential
probability ratio test (GO-SPRT), which combines the advan-
tages of sensor censoring and sequential probability ratio test.
The fusion efficiency of this scheme is analyzed. Our analysis
and simulation show that it has the potential to significantly
reduce the communication cost of a distributed detection sys-
tem. We have not addressed the design of transmission pro-
tocol within each fusion stage. This will be the subject of our
future investigation.
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