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ABSTRACT
This paper extends our earlier work on sensor selection [1].
We are now focusing on a more challenging problem of how
to effectively utilize quantized sensor data for target tracking
in sensor networks by considering sensor selection problems
with quantized data. A subset of sensors are dynamically se-
lected to optimize the tracking performance. The one-step-
look-ahead posterior Cramér-Rao Lower Bound (CRLB) on
the state estimation error is proposed as the sensor selection
criterion. Particle ltering method is employed to compute
the posterior CRLB, as well as to estimate the target state.
Simulation results show that the proposed posterior CRLB
based method outperforms the one based on information the-
oretic measures.

Index Terms— Target Tracking, Sensor Networks, Parti-
cle Filters, Quantization, posterior CRLB

1. INTRODUCTION

Our previous work [1] proposed a method for selecting the
optimal set of sensors to participate in target tracking in sen-
sor networks. In [1], it was assumed that the information
provided by each sensor was complete and perfect. Thus
the communication cost was high requiring substantial sen-
sor node energy consumption. However, in real systems, sen-
sor data are communicated over bandlimited channels. So it
is critical to consider issues of transmission of quantized data
from the sensors to the fusion center and eventually the fusion
of such quantized data.
There exist some publications on tracking in sensor net-

works based on quantized sensor measurements. In [2], the
authors design a new framework for target tracking using quan-
tized data transmitted over noisy channel between sensors and
fusion center. In [3], the authors propose a delta-modulation
based intelligent quantizer for measurement fusion. Each sen-
sor dynamically designs the quantizer according to the up-
dated target state estimate sent from the fusion center. In
this paper, we focus on the problem of selecting a subset of
sensors to maximize the tracking performance with quantized
sensor measurements. It is assumed that each sensor employs

the same uniform quantization scheme. There exist many sen-
sor selection algorithms. Among them information driven [4]
method is the most popular one. The main idea is to select the
sensors that can provide the most useful information, which is
measured by entropy or mutual information. However, if we
select more than one sensor, the information-theoretic mea-
sure is decoupled for each sensor, implies that the total in-
formation measure is the sum of each individual senor’s in-
formation measure. Hence, the information-theoretic mea-
sure based method is a greedy method in that it chooses a
set of sensors with the highest stand-alone information mea-
sures, rather than a set of sensors which collectively give the
most information regarding the target state. In this paper, we
propose a posterior CRLB based sensor selection approach.
There are twomain motivating reasons for our approach. First,
the tracking accuracy in terms of the MSE is bounded below
by CRLB [5]. This lower bound gives an indication of per-
formance limits, so it can be used as a criterion for sensor se-
lection. Second, the posterior CRLB based method chooses a
set of sensors which collectively minimize the PCRLB on the
estimation errors.

2. SYSTEMMODELS

2.1. Target Motion Model

We consider a single target moving in a 2-D Cartesian coor-
dinate plane according to a dynamic white noise acceleration
model [6]:

xk = Fxk−1 + vk (1)

where constant parameter F models the state kinematics, the
target state at time k is de ned as xk = [xk ẋk yk ẏk]T , xk and
yk denote the target position, ẋk and ẏk denote the velocities.
vk is white Gaussian noise with covariance matrixQ.

2.2. Sensor Measurement Model

In this paper, we assume that a large number of homogeneous
bearing only sensors are randomly deployed in a two dimen-
sional Cartesian coordinate plane. There exists a fusion center
that is responsible for collecting information from each sensor
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and providing the estimate of the target state. The fusion cen-
ter has knowledge about the individual sensors, such as their
positions, measurement accuracy and quantization scheme.
At each time, only a small number of sensors are activated
to perform the sensing task and provide their quantized mea-
surements to the fusion center. The measurement model is
given by

θj
k = h(xk) + w

j
k = tan−1

(
yk − ysj

xk − xsj

)
+ w

j
k (2)

z
j
k = Q(θj

k mod 2π) (3)

where θj
k is the original measurement from sensor j with ad-

ditive white Gaussian noise w
j
k, whose variance is parame-

terized as R. xsj and ysj represent the corresponding coor-
dinates of sensor j. The remainder after θj

k is divided by 2π
is sent to the quantizer. Q is a m-bit uniform quantizer on
(−π, π).

3. POSTERIOR CRLBWITH QUANTIZED
MEASUREMENTS

Let x̂k be an unbiased estimator of the state vector xk. The
covariance of xk is bounded below by the recursive PCRLB,
which is de ned to be the inverse of the Fisher Information
Matrix (FIM) Jk

Pk = E{[x̂k − xk][x̂k − xk]T } ≥ J−1
k (4)

Jk = E{−Δxk
xk

log p(xk, zk)} (5)

where J−1
k is the posterior CRLB matrix andΔΘ

Ψ = ∇Ψ∇T
Θ.

∇ is the rst-order partial derivative operator de ned as

∇x =

[
∂

∂x1
, · · · ,

∂

∂xr

]T

(6)

In [5], Tichavske et al. provide an elegant recursive equation
to calculate the sequential FIM Jk

Jk+1 = D22
k − D21

k (Jk + D11
k )−1D12

k (7)

where
D11

k = E{−Δxk
xk

logp(xk+1|xk)} (8)

D12
k = E{−Δ

xk+1
xk

logp(xk+1|xk)} (9)

D21
k = E{−Δxk

xk+1
logp(xk+1|xk)} = (D12

k )T (10)

D22
k = E{−Δ

xk+1
xk+1 logp(xk+1|xk)} +

E{−Δ
xk+1
xk+1 logp(zk+1|xk+1)}

= D22,a
k + D22,b

k (11)

Note that all the above expectations are taken with respect to
the joint probability density function (PDF) p(Xk+1,Zk+1),

whereXk+1 � x0:k+1 andZk+1�z1:k+1 denote all the states
and observations up to time k + 1.
The recursion of Equation(7) starts from an initial FIM

J0, which can be calculated from the a priori PDF p(x0).

J0 = Ep(x0){−Δx0
x0

logp(x0)} (12)

For the linear motion model and nonlinear measurement model
adopted in this paper, the Equations (8)∼(11) become

D11
k = FT Q−1F (13)

D12
k = (D12

k )T = −FT Q−1 (14)

D22
k = Q−1 + D22,b

k (15)

In general, it would be a dif cult task to calculate D22,b
k , as

well as dynamic estimation with the quantized measurements.
But particle lter techniques [7] provide us a powerful tool to
circumvent the above dif culties. Each PDF in the expecta-
tions can be represented as a set of samples with associated
weights. With the system models described in Section 2 and
only one sensor j activated at any moment , D22,b

k can be ex-
pressed as:

D22,b
k =

⎡
⎢⎢⎣

Mk
1,1 0 Mk

1,3 0
0 0 0 0

Mk
3,1 0 Mk

3,3 0
0 0 0 0

⎤
⎥⎥⎦ (16)

where

Mk
1,1 = −Ep(Xk+1,Zk+1)

[
∂2 log p(zj

k+1|xk+1)

∂x2
k+1

]
(17)

Mk
1,3 = Mk

3,1 = −Ep(Xk+1,Zk+1)

[
∂2 log p(zj

k+1|xk+1)

∂xk+1∂yk+1

]
(18)

Mk
3,3 = −Ep(Xk+1,Zk+1)

[
∂2 log p(zj

k+1|xk+1)

∂y2
k+1

]
(19)

Using the properties of a rst-order Markovian system,
the joint PDF can be expressed as the following iterative equa-
tion

p(Xk+1,Zk+1) = p(Xk,Zk)·p(xk+1|xk)·p(zk+1|xk+1)
(20)

With this property, (17) can be simpli ed as

Mk
1,1 = Ep(xk+1|xk)p(zk+1|xk+1)

⎧⎪⎨
⎪⎩

[
∂p(zj

k
|xk+1)

∂xk+1

]2

p2(zj
k+1|xk+1)

⎫⎪⎬
⎪⎭ (21)
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Simpli cation of Equations (18) and (19) may be carried
out in a similar manner

Mk
1,3 = Ep(xk+1|xk)p(zk+1|xk+1)

⎡
⎣ ∂p(zj

k+1|xk+1)

∂xk+1

∂p(zj

k+1|xk+1)

∂yk+1

p2(zj
k+1|xk+1)

⎤
⎦

(22)

Mk
3,3 = Ep(xk+1|xk)p(zk+1|xk+1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂p(zj

k+1|xk+1)

∂yk+1

]2

p2(zj
k+1|xk+1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(23)

When the periodicity of bearings around 2π is taken into
account, the likelihood function for each quantization level l
can be found by

Pr{zj
k+1 = l|xk+1} =

∞∑
n=−∞

Pr{(l − 1)η + 2nπ

< tan−1
Δy

Sj

k+1

Δx
Sj

k+1

+ w
j
k+1 < lη + 2nπ}

(24)

Pr(zj
k+1 = l|xk+1) =

∞∑
n=−∞

{
Φ

(
lη + β

Sj

k+1,n

σ

)
−

Φ

(
(l − 1)η + β

Sj

k+1,n

σ

) } (25)

where Δy
Sj

k+1 � yk+1 − ySj , and Δx
Sj

k+1 � xk+1 − xSj ,

β
Sj

k+1,n = 2nπ − tan−1 Δy
Sj

k+1

Δx
Sj

k+1

, l = −L/2 + 1,−L/2 +

2, . . . , L/2, and L = 2m. η = 2π/L, σ is the standard devi-
ation of the measurement noise, Φ is a cumulative Gaussian
distribution with mean 0 and variance 1.
The partial derivatives in above equations can be found by

∂p(zj
k+1|xk+1)

∂xk+1
=

Δy
Sj

k+1

∑∞
n=−∞ γ(k + 1, n, l, Sj)√

2πσ
[
(Δx

Sj

k+1)
2 + (Δy

Sj

k+1)
2
] (26)

∂p(zj
k+1|xk+1)

∂yk+1
=

−Δx
Sj

k+1

∑∞
n=−∞ γ(k + 1, n, l, Sj)√

2πσ
[
(Δx

Sj

k+1)
2 + (Δy

Sj

k+1)
2
] (27)

where

γ(k + 1, n, l, Sj) � e−
lη+β

Sj
k+1,n
σ − e−

(l−1)η+β
Sj
k+1,n

σ

Due to quantization, the likelihood function p(zk+1|xk+1)
becomes a probability mass function and the PDF p(xk+1|xk)
can be represented approximately by propagating the samples
{x(i)

k } from time k to k+1 according to the particle lter the-
ory.

p(xk+1|xk) ≈
N∑

i=1

ω
(i)
k · δ

x
(i)
k+1

(xk+1 − x
(i)
k+1) (28)

Therefore the integrals due to expectation can be converted
into summation and further can be evaluated approximately
by particle lters only if we know the current PDF p(xk|Zk),
which can be easily derived by particle lter theory and rep-
resented approximately by the following equation

p(xk|Zk) ≈
N∑

i=1

ω
(i)
k · δ

x
(i)
k

(xk − x
(i)
k ) (29)

where N is the number of particles.
Till now, we have shown how to compute the FIM for the

case of one activated sensor. With multiple sensors activated
at each moment, the total FIM is just the sum of each individ-
ual FIM under the assumption that the measurements taken by
sensors are independent of each other, which is usually con-
sidered to be true. The posterior CRLB can be obtained by
simply taking the inverse of the FIM.

4. POSTERIOR CRLB BASED SENSOR SELECTION

The posterior CRLB gives an indication of performance bounds,
and no unbiased estimators can outperform it in terms ofMSE.
Usually people are more concerned with the target position.
So we choose the summation of the position bound along each
axis as the cost function for time k + 1

Ck+1 = J−1
k+1(1, 1) + J−1

k+1(3, 3) (30)

where the J−1
k+1(1, 1) and J−1

k+1(3, 3) are the bounds on the
MSE corresponding to xk+1 and yk+1 respectively. Assume
we choose a subset consisting of Lk

s sensors from the total
Ls candidates on every tracking snapshot at time k, where Lk

s

can change over time. Those sensors that collectively min-
imize the above cost function will be activated at the next
time k + 1. In this paper, we use the optimal enumerative
search method to determine the optimal combination of sen-
sors, which minimizes the cost function.

Lk+1,∗
s � argmin

L
k+1
s ⊂S

Ck+1(L
k+1
s ) (31)

where S denotes the set containing all the sensors.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm by tracking a single target moving through a 500×500
eld, where 20 bearing-only sensors are randomly deployed.
The measurement noise variance is set to R = 0.1. F and Q
are chosen as follows respectively

F =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ , Q = q

⎡
⎢⎢⎢⎣

T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T

⎤
⎥⎥⎥⎦
(32)
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where T = 2 is the time interval between two consecutive
sampling points, and q = 0.1 is the process noise factor.
For comparison purposes, we also implement two other

methods with quantized measurements: 1) Nearest neighbor:
the sensors that have the closest distance to the predicted po-
sition of the target will be selected, and 2) Information driven:
the sensors that have the minimal expected posterior entropies
will be selected. For each simulation, the number of particles
is N = 200, and 50Monte Carlo runs are preformed.
Tracking results by selecting two sensors at any moment

are shown in Figure 1. A coarse quantization of measure-
ments withm = 4 is adopted. Figure 2 and Figure 3 show the
MSEs of the estimate of target position in two dimensional
coordinates respectively. From the simulation, we can see that
our proposed method achieves more accurate tracking results.
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Fig. 1. True and the estimated target trajectories using differ-
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Fig. 2. Comparison of posterior CRLB with MSEs for the
x-coordinate using different sensor selection methods.

6. CONCLUSIONS

In this paper, we considered a sensor selection problem for
tracking a single target in sensor networks with quantized
measurements. The one-step look ahead posterior CRLB is
approximated recursively by using a particle lter that is used
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Fig. 3. Comparison of posterior CRLB with MSEs for the
y-coordinate using different sensor selection methods.

for dynamic estimation as well. Sensors, that collectively
minimize the cost function established on posterior CRLB,
are activated, while other sensors remain in the idle state to
save energy. We compared our method with the one based on
the information-theoretic measure. Simulation results demon-
strate the signi cantly improved performance of our approach.
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