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ABSTRACT
Classi cation employing sensors connected by wireless net-
works is of great interest. As the sensor nodes are usually
powered by batteries, saving transmissions is important. We
demonstrate transmissions can be saved, without degradation
in error probability, using an ordering approach. The aver-
age number of transmissions saved (ANTS) is lower bounded
by a quantity proportional to the number of sensors employed
provided a well-behaved distance measure between the sensor
distributions is suf ciently large. For such cases, the ANTS
over the optimum unconstrained energy approach is shown to
be larger than half the number of sensors employed.

Index Terms— energy ef cient classi cation, sensor net-
working, cross-layer design, joint signal processing and com-
munications, pattern recognition

1. INTRODUCTION

Classi cation has been extensively studied from classical per-
spectives [1],[2] which ignore energy consumption. More re-
cently, small sensor equipped nodes, called sensors here, car-
rying their own energy sources and using wireless commu-
nication have been of great interest for use in classi cation
under the topic of sensor networking. As these nodes carry
their own batteries, ef cient use of their battery power im-
plies longevity of the sensor networks. Therefore, there is a
need to develop an energy ef cient classi cation system that
has a longer lifetime while preserving the error probability of
the classi er.
Consider a classi cation approach which collects scalar

data samples from N sensors which are transmitted by
wireless links to a fusion center and formed into an N -
dimensional vector which is used to make a binary decision
at the fusion center. Such a classi cation approach uses
a training procedure to separate the N -dimensional space,
formed from the N -dimensional vectors of possible sensor
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observations, into two distinct regions. Then, after training,
depending of which of the two distinct regions the current
N -dimensional vector under test falls into, this classi cation
approach will decide for one of the two hypothesis. We call
this approach, where all sensors transmit their observations
to the fusion center, the energy unconstrained approach.
Let the data sample taken from the jth sensor be denoted

by xj . Further, let us focus on classi cation approaches which
are linear in the features, where the the features are some
nonlinear processing gj(xj) of the jth sensor’s observations.
Thus, the unconstrained energy approach will decide for H1

when
N∑

j=1

Lj =

N∑
j=1

wjgj(xj) > β (1)

and it will decide for H0 otherwise, where the weight vec-
tor (w1, . . . , wN )T is found during training along with the
threshold β which allows a bias towards one hypothesis or
the other (p = Prob(H1) �= 0.5). This formulation ap-
plies to all classi cation approaches which are linear in the
feature space including support vector machine (SVM) net-
works [3],[4],[5], perceptron networks [6],[7], potential func-
tion networks [8], and radial basis function networks [9], just
to name a few. It is worth noting that networks that make deci-
sions using (1) have been shown to have universal approxima-
tion capabilities which makes these networks of considerable
practical interest. In the sequel, we denote yj = gj(xj) for
brevity.
We assume the wireless links are reliable. Since the sen-

sors are assumed to be close to one another, we assume they
all use the same energy to send data to the fusion center.
We can extend our results to other cases in a straightfor-
ward manner. Now we discuss a method for saving energy
based on using ordered transmissions. Assume the same
training procedure as for the energy unconstrained approach
is undertaken. This establishes the hyperplane in terms of
y1, . . . , yN described in (1). Recall, any hyperplane is de-
ned by a vector perpendicular to the hyperplane, assuming
the vector’s originating endpoint falls within the hyperplane.
In (1), (w1, . . . , wN ) is such a vector. We take the vector’s
originating endpoint as the origin for simplicity. Now we can
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de ne the informativeness value of any observation vector
by the length of it’s projection onto the vector perpendicular
to the hyperplane. Thus the magnitude of the informative-
ness is roughly speaking the shortest distance from the point
(y1, . . . , yN ) to the hyperplane. A positive informativeness
value indicates a preference for one hypothesis (H1 in this pa-
per without loss of generality) and a negative value indicates a
preference for the other (H0 in this paper). The magnitude in-
dicates how much evidence for the corresponding hypothesis
the given data value indicates.
In order to de ne the informativeness of a sensor obser-

vation, each of the sensor observations can be viewed as a
vector if we set all other components, but the one correspond-
ing to the observation in question, to zero. Thus the vector
corresponding to second observation, assumed to be y2, is
(0, y2, 0, · · · , 0)T . Then we can order the transmissions so
the more informative (larger magnitude projections) sensors
transmit rst and the transmissions are stopped after over-
whelming evidence is accumulated for one hypothesis or the
other. Note that the evidence is accumulated in the form of
the sum of the informativeness values for sensors that trans-
mitted. Using the method just described, we calculate the
informativeness value of the observation corresponding to yj

as Lj = wjyj and we order these. Recall the sensor trans-
missions are wireless so suf ciently close nodes, as we as-
sume, can hear each others’ transmissions. Thus, for suf-
ciently close nodes, all nodes can listen and compute the
sum of the informativeness values that have been transmit-
ted1. When they judge this sum to be large or small enough,
they stop transmitting, which will save energy. We can show
that a proper approach of the type we suggest will outperform,
employ less sensor data transmissions for the same error prob-
ability, the optimum unconstrained energy approach.
To order transmissions in a distributed manner, not requir-

ing any coordination transmissions between the sensors, the
jth sensor can transmit at a time equal to K

|Lj |
for some real

scalarK that can be chosen as small as desired, within system
limits, to minimize any delays. All sensors (or fusion center)
listen and compute the sum of all the Ljs transmitted. Then
the transmissions stop when this sum is larger than a threshold
tU or smaller than a threshold tL which we now de ne. Let
nUT be the number of sensors who have not yet transmitted
at a given time and let LN−nUT

denote the informativeness
value for the last sensor transmission prior to that same time.
Then

tU = β + nUT |(LN−nUT
)| (2)

and
tL = β − nUT |LN−nUT

)|. (3)

Since we need to order the informativeness values to order
transmissions, we employ the notation |L[1]| > |L[2]| >
· · · > |L[N ]| for the ordered values. Thus L[1] denotes the

1Alternatively the fusion center can send a control message for sensors to
stop transmissions so sensor listening is avoided.

informativeness value with largest magnitude and L[2] has
the next largest magnitude. We will show the energy sav-
ing that can be achieved with this approach by counting the
transmissions saved.

2. THEORETICAL ANALYSIS OF PERFORMANCE
ADVANTAGE OF ORDERING TRANSMISSIONS

The following theorem demonstrates that the general ap-
proach of having more informative sensors transmit rst will
save transmissions.

Theorem 1 Assume sensor transmissions are ordered so sen-
sors with larger |Li| transmit rst and that transmissions stop
when the left-hand side of (1) is larger than tU from (2) or
smaller than tL from (3) for the given sensor transmissions.
If tU is exceeded we decide for H1. If tL is exceeded we
decide for H0. If all transmissions proceed we use (1). In
(1), (w1, . . . , wN )T (used in Li = wiyi) and β are obtained
from training for an energy unconstrained approach (no re-
strictions on energy). The approach described in this theorem
is always better than the energy unconstrained approach. It
gives the same probability of error pe while using a smaller
average number of sensor data transmissions.

Outline of the Proof for Theorem 1 Note that we have or-
dered the transmissions. Thus if the last transmission sent the
sensor informativeness value LN−nUT

, then the largest pos-
sible magnitude contribution from the sum of the sensor infor-
mativeness values not yet transmitted is nUT |LN−nUT

|. Note
that tU is chosen to be the unconstrained energy threshold β
plus this extra safety margin. Once the sum of the informa-
tiveness values from the transmitting sensors is larger than
tU , this implies the fusion center’s sum, from (1), will have
to be larger than β, regardless of the data observed at the
sensors that did not transmit. Thus, even without transmitting
further, for this set of observations we are able to implement
the energy unconstrained approach with fewer transmissions.
A similar savings of transmissions can be made when the sum
of the informativeness values from the transmitting sensors is
smaller than tL, which implies the fusion center’s informa-
tiveness sum will have to be smaller than β, regardless of the
data observed at the sensors that did not transmit.

So far, we have shown that an approach based on sending
signals from the different sensors at different times can be
more ef cient. Next, we show large gains under fairly mild
conditions.
Consider a hypothesis testing problem with a correspond-

ing distance measure [10] whose value s measures the dis-
tance between the distributions of the sensor observations oc-
curring under the two hypotheses. Thus if s becomes large it
should be easy to decide the true hypothesis based on Li for
any i. The sign of Li should be consistent with the true hy-
pothesis as described previously. Of courseH0 should lead to

2506



Li < 0 in a similar way. Let us quantify this in the following,
very reasonable, assumption.

Assumption 1 For the binary hypothesis testing problems
considered, we assume the existence of a distance measure
with value s such that Pr(Lj > 0|H1) → 1 as s → ∞ and
Pr(Lj < 0|H0) → 1 as s → ∞.

In the numerical results, we give an example of such a binary
hypothesis testing problem which we call the shift-in-mean
problem.
Let us consider the number of transmissions saved by the

approach considered in Theorem 1. One question of particu-
lar interest is how the savings scale with the number of sen-
sors employed N . The following theorem compares to the
optimum unconstrained energy approach.

Theorem 2 When using the approach in Theorem 1 for a
binary hypothesis testing problem satisfying Assumption 1
with suf ciently large s, the average number of transmissions
saved over the optimum unconstrained energy approach in-
creases proportional to N (for even N ) while error proba-
bility is not effected. In particular, the average number of
transmissions saved Ns is lower bounded by �N

2 � for large
N .

Outline of the Proof for Theorem 2 First assume β = 0.
We return to β �= 0 later. Let us focus on the case where
the upper threshold is exceeded and N is even. De ne

k∗ = min1≤k≤N

{
k∑

i=1

L[i] > β + (N − k)
∣∣L[k]

∣∣} (4)

as the number of necessary transmissions, so that the average
number of transmissions saved Ns is E{N − k∗}. It is easy
to show that (more saved if we consider lower threshold)

Ns ≥ E{N − k∗} =

N∑
k=1

(N − k)Pr(k∗ = k)

≥
N

2
Pr(k∗ ≤

N

2
) (5)

since
∑N

k=1(N − k)Pr(k∗ = k) ≥
∑N/2−1

k=1
N
2 Pr(k∗ =

k) + N
2 Pr(k∗ = N

2 ) by dropping positive terms and using
N − k > N/2 if k < N/2.
Now consider Pr(k∗ ≤ N

2 ) from (5) with k∗ from (4). In-
tuitively, when k = N/2 on the right hand side of (4) for even
N , each term in the sum on the left hand side of the inequality
is individually larger in magnitude than the multiplier of the
term (N − k) = N

2 on the right hand side. Thus, if the terms
in the sum are all positive, the value of the sum is larger than
N
2

∣∣∣L[ N
2

]

∣∣∣. Under H1 and for suf ciently large s, the terms in
the sum all have a positive sign from Assumptions 1.
Thus we have shown that Pr(k∗ ≤ N

2 ) → 1 as s → ∞
under H1 from Assumptions 1. Thus if p = 0.5, H1 is true

half the time and so Ns ≥ N/4 from (5). We can bound the
gains from exceeding the lower threshold under H0 with an
identical factor of N/4 and these gains add to give Ns ≥
N/2.
Now consider β �= 0. If we consider (4), we see that the

rst and last term inside the {} grow with N , while the bias
term β does not. Thus as N increases the bias term must
become less and less important. Thus, at some large N the
importance of this term becomes negligible and the previous
conclusions still apply.

3. NUMERICAL RESULTS

Here, we focus on a shift-in-mean problem where at the jth

sensor we observe

xj = θ − s/2 + nj (6)

where θ = 0 under H0 and θ = s > 0 under2 H1. In (6),
nj represents the noise which has probability density func-
tion (pdf) f with zero mean and unit variance. To promote
simplicity we focus on linear classi cation approaches so that
yi = xi. The dif culty of the hypothesis testing problem de-
scribed in (6) is clearly characterized by the signal strength s.
Clearly as s becomes very large, yj yields large positive val-
ues under H1 and large negative values under H0 with very
high probability. Without loss of generality, we assume that
the training will preserve this polarity so that in cases of large
s,

∑N
j=1 Lj =

∑N
j=1 wjyj yields large positive values under

H1 and large negative values under H0 with very high prob-
ability. This implies positive wj for this formulation and this
would come out of suf ciently accurate training. Choosing
this formulation, where positive values correspond toH1 and
negative to H0 is not limiting and other choices would yield
similar results. The main point is that the two hypothesis are
easier to separate as s becomes large as we show in the fol-
lowing Lemma.

Lemma 1 For the shift-in-mean problem, as described in (6),
Pr(Lj > 0|H1) → 1 as s → ∞ assuming wj > 0.

Outline of the Proof for Theorem 3 Given wj > 0 we have

Pr(Lj > 0|H1) = Pr(wj(
s

2
+ Nj) > 0|H1)

= Pr(
s

2
> −Nj |H1) = Pr(−

s

2
< Nj |H1)

=

∫ ∞

yj=−s/2

f(yj)dyj = 1 − F (−
s

2
) (7)

where F is the cumulative distribution function (cdf) corre-
sponding to f . Now since F (−∞) = 0 for any cdf, then from
(7) we obtain

lim
s→∞

Pr(Lj > 0|H1) = lim
s→∞

1 − F (−
s

2
) = 1 (8)

2We assume s takes on a speci c value.
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Similar demonstration for Pr(Lj < 0|H0) follows easily.
First consider the model in (6) with unit variance additive

Gaussian noise and assume that either hypothesis is equally
likely (p = 0.5) and that a SVM is used for the classi cation
(500 training samples, and 2500 testing samples) . Figure 1
shows the percentage of transmissions saved by our approach
for cases with signal strengths of s = 0.5, s = 1, s = 5
plotted as a function of the total number of sensors in the net-
work. From the gure, we can observe the bene ts of having
larger signal strength on the performance. Monte Carlo sim-
ulation results which use 1000 runs were employed to obtain
these results. As the signal strength is increased from s = 1 to
s = 5, the number of saved transmissions increases. Our re-
sults indicate that savings converge to an upper bound, which
is close to Ns = 0.56N for large N and s. For smaller signal
strengths (for example: s = 0.5), Figure 1 indicates that our
savings are under 0.5N ,which is consistent with Theorem 2.
The results in Figure 2, for s = 5, show that the savings are
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Fig. 1. Percentage of transmissions saved over unconstrained
support vector machine classi er for p = 0.5 and sensor
observations from (6) with unit variance additive Gaussian
noise.

larger for p �= 0.5 than for p = 0.5. Further, the savings for
p < 0.5 appear to be same as those for p > 0.5 provided
that |p − 0.5| is the same in both cases. We have many more
numerical results which we omit due to space. The results
show that pe for our ordering approach is the same as pe for
the energy unconstrained approach, as expected. We also nd
results similar to those in Figure 1 and Figure 2 for noise with
a beta, gamma or uniform distribution.

4. CONCLUSION

In this work, we describe a new approach for saving transmis-
sions using ordering for a classi cation problem with multiple
sensors.
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Fig. 2. Percentage of transmissions saved over unconstrained
support vector machine classi er for various p �= 0.5, s = 5,
and sensor observations from (6) with unit variance additive
Gaussian noise.
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