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ABSTRACT
We propose a simple and energy efficient distributed Change Detec-
tion scheme for sensor networks based on Page’s parametric CUSUM
algorithm. The sensor observations are IID over time and across
the sensors conditioned on the change variable. Each sensor runs
CUSUMand transmits only when the CUSUM is above some thresh-
old. The transmissions from the sensors are fused at the physical
layer. The channel is modeled as a Multiple Access Channel (MAC)
corrupted with IID noise. The fusion center which is the global de-
cision maker, performs another CUSUM to detect the change. We
provide the analysis and simulation results for our scheme and com-
pare the performance with an existing scheme which ensures energy
efficiency via optimal power selection.
Key words: CUSUM, Decentralized Change Detection, Reflected

Random Walk, Brownian Approximation, Sensor Networks.

1. INTRODUCTION
Sensor networks are often deployed for monitoring and control of
systems where human intervention is not desirable or feasible. We
are interested in the problem of intrusion detection in a geographi-
cal area using sensor networks. The sensor network has the respon-
sibility to detect this intrusion via periodic monitoring of the area
and running some algorithm in a distributed fashion. It is assumed
that the entry of an intruder will statistically affect the observations
taken by the sensors. Thus, the algorithms developed for detection
of change ([10, 12]) can be useful.
There are broadly two approaches to change detection ([12],

[10]). Shiryaev [12] obtained an optimal algorithm while assuming
that the change occurs at a random time with a geometric distribu-
tion (this is called the Bayesian setting). Page [10] did not assume
any statistics for the unknown time of change, and developed the
CUSUM algorithm. This was later shown to be asymptotically opti-
mal in the Min-Max sense in [5]. Moustakides [9] later on showed
that it also minimizes the worst case delay.
In our application using sensor networks, two extra issues are

involved. One is that the observations are made by many sensors dis-
tributed in space. These observations need to be sent to a fusion node
to make the final decision. Secondly, each sensor is an inexpensive
node with limited computational resources and has very little power.
Thus the following variants of the change detection algorithm have
been studied in this scenario:

1. Each sensor sends a quantized version of its observations to
the fusion center. The fusion center, based on the data trans-
mitted, makes a decision on the change ([15, 16]).

2. Each sensor runs a test based on algorithms of Shiryaev or
Page and performs a local detection. The local decisions are
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then transmitted to the fusion center for it to fuse and make
the final decision ([6, 8]).

A specific case of the first version is solved in ([16]) under the
Bayesian setting with geometric change variable. If Page’s CUSUM
is used at each sensor to run the local test and no assumption is made
about the change, then [6] has proved that it is asymptotically opti-
mal (in the min-max sense) for the fusion center to declare a change
at the first instant at which all the sensors declare a change. Recently
[8] has shown that the CUSUM is Min-Max optimal when used in
either of the above two scenarios.

In all the above strategies the change detection problem is solved
at the link layer, by assuming a perfect physical layer (reliable com-
munication) and energy is conserved by sending fewer bits. The
problems with this type of formulation are:

1. In all of these approaches the sensor nodes transmit their ob-
servations to the fusion node at each time instant. By sending
fewer bits the energy is conserved. However in change detec-
tion scenarios often the change occurs rarely. One can poten-
tially save considerably by sending observations only when a
change is detected by a sensor.

2. Even if the communication between the sensor and the fusion
center is reliable (this can be ensured for example by using
large enough transmit power), the sensors still have to con-
tend at the MAC. With a large number of sensors, this delay
can be significant.

In [11], the second effect is mitigated by making decision in each slot
at the fusion center by using only the first few bits arriving in the slot.
Information from other sensors are ignored. In [7], the information
from all the sensors is sent simultaneously using orthogonal codes.
In [17], Gaussian MAC is used to fuse the information from different
sensors without using orthogonal codes. They also try to minimize
directly the energy used in transmission. This provides them with
significant gain in performance over the previous studies.

However, because in [17] also, every sensor transmits all its ob-
servations, the energy can be saved as mentioned above by sending
data only when change occurs.

We propose an energy efficient scheme called DualCUSUM,
which uses parametric CUSUM at the sensors (a sensor sends ob-
servations only when it senses change by CUSUM), physical layer
fusion at the channel (to reduce MAC delay) and one more para-
metric CUSUM at the fusion center (to exploit all the observations
obtained by the fusion center till that time). As compared to [17], we
have two improvements: Not sending information from the sensors
all the time and using CUSUM at the fusion node, exploiting all past
information. No one seems to have used CUSUM at the sensors as
well as at the fusion center. We provide a detailed analysis, show
that our algorithm is more efficient than that of [17] and obtain an
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optimization algorithm to fine tune our algorithm. Furthermore, our
algorithm is far more computationally simpler than that in [17] and
unlike in [17], we do not require feedback from the fusion node to
the sensor nodes.
Section 2 explains the model and introduces the notation. Sec-

tion 3 analyzes the performance. Section 4 provides the optimization
algorithm and Section 5 concludes the paper.

2. OUR MODEL AND ALGORITHM
In a geographical area L sensors are deployed providing completely
overlapping coverage. Let Xk,l be the observation made at sensor l
at time k and it transmits Yk,l. The fusion center receives at time k,

Yk =
LX

l=1

Yk,l + ZMAC,k, (1)

where, ZMAC,k is iid MAC noise. Observe that this already mod-
els the physical layer fusion at the MAC. In practice, for (1) one
needs phase, time and carrier synchronization of transmissions from
different sensors. Distributed algorithms are available for this.
The distribution of the observations at each sensor changes at

a random time T with a known distribution. Before the change
{Xk,l, k ≥ 1} are iid with density f0 and after the change with den-
sity is f1. The objective of the fusion center is to detect this change
as soon as possible at time τ (say) using the messages transmitted
from all the L sensors, subject to an upper bound on the False Alarm
(FA) probability P (τ < T ) and the average energy used. Then, the
general problem is:

minEDD
�
= E[(τ − T )+], (2)

Subj to PF A
�
= P (τ < T ) ≤ α & E

"
τX

k=1

Y
2
k,l

#
≤ E0, 1 ≤ l ≤ L.

Since, sensor observation noise and the MAC noise are often
Gaussian, we will pay particular attention to this case (although all
our analysis is valid for general distributions). Then, we will assume
that Xk,l ∼ N(θk, σ2), where θk = m0 before the change and
θk = m1 after the change. Also, then {ZMAC,k}, the MAC noise
will be assumed iid Gaussian with mean 0 and variance σ2

M .
The following algorithm does not provide an optimal solution to

(2) but uses several desirable features to provide better performance
than the ones we are aware of.

DualCUSUM
1. Sensor l uses parametric CUSUM (as defined in [10]),

Wk,l = max (0, Wk−1,l + ξk,l) , W0,l = 0, (3)

where, ξk,l = log [f1 (Xk,l) /f0 (Xk,l )].

2. Sensor l transmits in slot k only if Wk,l > γ. This is the
energy saving step.

3. Physical layer fusion (as in [17]) reducing transmission delay:

Yk =
LX

l=1

Yk,l + ZMAC,k, (4)

where, Yk,l = b1{Wk,l>γ}, b > 0 is a design parameter and

1A denotes the indicator function of set A.

4. Change detection at fusion center via CUSUM:

Fk = max

j
0, Fk−1 + log

gI(Yk)

g0(Yk)

ff
(5)

where g0 is the density of ZMAC,k and gI is the density
of ZMAC,k + bI , I being a design parameter. Thus, for
ZMAC,k ∼ N(0, σ2

M ), g0 ∼ N(0, σ2
M ) and gI ∼ N(Ib, σ2

M ).

5. The fusion center declares a change at time τ (β, γ, b, I)when
Fk crosses a threshold β:

τ (β, γ, b, I) = inf{k : Fk > β}.

Figure (1) compares the optimal DualCUSUM (obtained via the
algorithm in Section 4) with the scheme in [17] and the optimal
centralized Shiryaev scheme via simulation. We use the parame-
ters: L = 2, I = 1, f0 ∼ N(0, 1), f1 ∼ N(0.75, 1), ZMAC,k ∼
N(0, 1), T ∼ Geom(ρ = 0.05) and E0 = 7.61. Clearly Dual-
CUSUM performs much better than [17] and the performance tends
to improve as PF A decreases. We have also made a limited com-
parison for 4 sensors. For PF A = 5e − 4 and E = 2.4 and 3.1,
algorithm in [17] gives EDD = 24.8 and 20 while DualCUSUM
provided EDD = 17.5 and 16.6 respectively. This motivates us to
study DualCUSUM further.
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Fig. 1. ln(PF A) (x axis) vs EDD comparison with [17].

In Section 3, we theoretically analyse DualCUSUM. In Section
4 we provide an algorithm to compute,

(β∗
, γ

∗
, b

∗
, I

∗) = arg min
(β,γ,b,I)

EDD(β, γ, b, I) (6)

subj to P (τ (β, γ, b, I) < T ) ≤ α and energy Eavg(β, γ, b, I) ≤ E0.

3. ANALYSIS
We first provide the false alarm analysis.

3.1. Analysis at the Local Sensor
At sensor l, Yk,l = b only when Wk,l > γ. Since {Wk,l, k ≥ 1}
is a reflected Random Walk, with negative drift before the change,
the up-crossing of γ byWk,l can be given by a Poisson process with
rate λγ where ([14])

λγ =

exp

»
− P∞

n=1 2n−1Q(Sn,l)

–
R ∞

−∞

“
log f1(u)

f0(u)

”
f1(u)du

e
−γ

, (7)

Q(Sn,l) = (P∞(Sn,l > 0)+P1(Sn,l ≤ 0)),P∞,P1 respectively
representing the probability measures under no change and change
at time index 1 and Sn,l =

Pn

k=1 ξk,l. For Gaussian f0 and f1, Sn,l

is Gaussian and hence λγ can be easily computed.

Distribution of the batch :
Next, we compute the sojourn time of Wk,l above γ after each up-
crossing of γ (called a batch size in the following).

Define, νγ,l := inf{k ≥ 1 : Wk,l ≥ γ}. Note that νγ,l ∼
exp(λγ) (equation (7)). The reflected random walk {Wk,l}τ0,l

k≥νγ,l

with τ0,l := inf{k : k > νγ,l; Wk,l ≤ 0} − νγ,l, is given by an
ordinary random walk. Further, with large values of γ (needed for
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Fig. 2. Complementary
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Fig. 3. Complementary
CDF of time to reach γ.

large PF A), τ0,l is sufficiently large. Thus, using Donsker’s theorem
[2] we approximate (with largeN ):˘

Wk+νγ,l,l

¯τ0,l

k≥0
∼ ˘

Wνγ,l,l + Sk,l

¯τ0,l

k≥0

∼
j

Wνγ,l,l + σS

√
Nζ

„
k

N

«
+ kμ

ffτ0,l

k≥0

where ζ(t), t ≥ 0 is a standard Brownian motion (BM), μ = Eξ1,1

and σS = var(ξ1,1). Also, we approximate Wνγ,l,l by its mean
(which we obtain by using results from [3] and [1]). Then, τ0,l is
approximated by the time taken by the above BM to reach 0 starting
with γov = E

`
Wνγ,l,l

´
. This is given by ([4]):

P{τ0,l > i} = Φ

„
γov − μi

σS

√
i

«
− e

2μγov

σ2

S Φ

„−γov − μi

σS

√
i

«
, (8)

where Φ denotes the CDF of the standard Gaussian distribution.
We obtain the batch distribution using occupation measure, above

γ, of the BM till time τ0,l ([13]). Choose time tB such that for some
small enough ε > 0, P (τ0,l ≤ tB) > 1 − ε and P (νγ,l ≥ tB) >
1− ε. This is possible if, P [τ0,l << νγ,l] is close to 1, which is true
for small PF A (and hence large γ).
Define δ = E

`
Wνγ,l,l

´ ‹
(σS

√
tB) ,m = μ

√
tB /σS and

η = #{k : Wk,l ≥ γ; νγ,l ≤ k ≤ νγ,l + τ0,l}. (9)

The batch size distribution is approximated using [13]

P ({η > j}) = 2

Z j

0

»
ϕ(m

√
1 − u)√

1 − u
+ mΦ(m

√
1 − u)

–
»
ϕ

„
δ − mu√

u

«
1√
u
− me

2mδΦ

„−δ − m√
u

«–
du, (10)

where, ϕ represents the standard Gaussian pdf.
We plot these approximations in Figs 2 and 3 which show a good

match. This approximation is used in the next section to obtain PF A.

3.2. False Alarm Analysis
In the DualCUSUM algorithm, transmissions happen only within the
batches. Hence, the probability of a FA within a batch is a crucial
element in the computation of PF A. However, FA (at the fusion
center) can also occur because of the Gaussian {ZMAC,k} alone.
Our approach is to compute the two FAs separately and then combine
them in an appropriate way to obtain the PF A.

3.2.1. Global False Alarm
We assume that P (η << T ) ≈ 1 (valid for small PF A). By in-

dependence of {Wk,l} and
n

W
k,l

′

o
, l �= l

′

, a batch occurs (at the

fusion center) with exponential rate Lλγ . Let ψ represent the num-
ber of batches before change. Then, by independence of η and T

P (ψ = j|T = i) =
(Lλγi)jeLλγ i

j!
. Hence,

PF A =
∞X

i=1,j=0

P (FA|T = i; ψ = j)P (ψ = j|T = i)P (T = i). (11)

Let p̃ denote the FA probability inside a batch. In Section 3.2.3
given below, we will show that the time to FA outside a batch is
exponentially distributed with parameter λ0. Hence, by the assump-
tions made in this section and by independence of observations,

P (FA|T = i; ψ = j) ≈ 1 − P ({No FA in j batches } (12)

∩{No FA in i observations}|T = i; ψ = j)

≈ 1 − (1 − p̃)j
e
−λ0i

.

In the above approximation, i (minus negligible amount due to batches)
observations, with no transmission from any sensor, occur in j + 1
batches. But by exponentiality of the distribution, PF A outside the
batches is approximately e−λ0i.
If T ∼ Geom(ρ), from (11) and (12) we get:

PF A = 1 − e−(λ0+λγLp̃)ρ

1 − e−(λ0+λγLp̃)(1 − ρ)
. (13)

3.2.2. False Alarm within a Batch
The false alarm probability within a batch, p̃ can be computed as,

p̃ ≈
∞X

i=1

P (η = i)P (FA |η = i),

where η is the batch size defined in (9) and P (FA |η = i) represents
the probability of FA (CUSUM at the fusion center crossing β) in i
transmissions when, Yk = b +

PL−1
l=1 Yk,l + ZMAC,k . As the batch

sizes are small, one can directly calculate it by,

P (FA |η = i) = 1 − E
h
Πi

k=1I{Fk≤β}

i
. (14)

This integral can be computed using Monte Carlo (MC) methods.

3.2.3. False Alarm outside a Batch
In the absence of any transmission from the sensors, Yk ∼ N(0, σ2

M ).
Hence, Fk is in negative drift. Thus the time to reach β, i.e., time
till FA is approximately exponentially distributed with parameter λ0

which can be obtained from [14] as we have done in (7).

3.2.4. Comparison of Analysis and Simulation for PF A

In this section we tabulate the results obtained for the PF A by anal-
ysis and by simulation. We take f0, f1, ZMAC,k Gaussian and T
Geometric with b = 1,m0 = 0,m1 = 1, σ = σM = 1 and provide
PF A values for different values of ρ, γ. β, L and I in Table 1.

L I γ β ρ PF A Simulation PF A Analysis
3 1 9 17 0.005 3.66e-5 3.07e-5
3 3 8 15 0.005 3.64e-5 3.95e-5
4 1 10 18 0.0005 1.58e-4 1.29e-4
4 2 9 14 0.005 1.12e-4 1.23e-4
4 4 9 14 0.005 2.21e-5 2.38e-5
4 4 10 17 0.005 1.40e-6 1.29e-6

Table 1. Comparison of PF A obtained via analysis and Simulation:
number of sample paths used 10,000,000.

3.3. Delay Analysis
The mean detection delay can be written as

EDD = ET

"
∞X

k=T

(k − T )P ({Fk > β} ∩k−1
n=1 {Fn < β})

#
, (15)

where, ET is the expectation w.r.t. the change time T . Since EDD

should be small, after the occurrence of change the drift should be
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positive. Then, the above integral can be computed using Monte
Carlo methods by setting FT−1 and WT−1,l to the corresponding
stationary means. If we take FT−1 = 0 = WT−1,l, then also the
approximation obtained is acceptable for reasonably low values of
false alarm.

This way of computingEDD takes negligible computing time as
compared to system simulations which run for a long time. We can
then use our FA analysis and this computation to obtain the optimal
parameters for the DualCUSUM in Section 4.

We are presently working towards getting good approximations
or tighter upper bounds for the mean detection delay.

4. OPTIMIZATION
Although our optimization algorithm works for general distributions,
in the following we limit ourselves to Gaussian distributions and
Geometric T . For our choice of parameters we have observed that
I = 2 gives the best result. Hence forth, we fix I = 2 and perform
optimization only w.r.t. (β, γ, b). Having obtained the analytical ex-
pressions (13), (15) forPF A andEDD respectively and with average
energy given by,

Eavg = b
2

»
E

„
τ − inf

n≥T
{Wn,1 > γ}

«
+

λγLE(η)

ρ

–
, (16)

one can use an appropriate optimization technique to solve (6). The
termE (τ − infn≥T {Wn,1 > γ}) is computed viaMonte Carlo meth-
ods as we did for EDD.

To begin with, for each value of β, we obtain (γ, b) as a fixed
point of the two dimensional function (constant C is calculated from
(7)),

h
β(γ, b) :=

»
log

„
CLp̃

log(1+ρα(1−α)−1)−λ0

«
,

q
E0b2E−1

avg

–T

,

constructed using the PF A, Eavg constraints (which will be satisfied
with equality). We now have a single parameter β and almost un-
constrained (of course we will still have positivity constraints) op-
timization problem. We initially use the grid method (getting the
optimal point by exhaustive search over a discretized space) to ob-
tain a coarse optimal point, which is improved upon using a steepest
decent algorithm.

We used the above algorithm to obtain the optimal parameters
in Table 2 for two different values of L. We set LE0 = 20. The
FA constraint used to obtain the optimal parameters (β∗, γ∗, b∗) is
given in the first column. Table 2 also provides PF A, Eavg of Dual-
CUSUM with parameters (β∗, γ∗, b∗). Here we have taken FT−1 =
0 = WT−1,l. We see that the theory is matching well with the sim-
ulations for low values of PF A which are of practical concern. This
shows the accuracy of approximations in (11) and (15) and of the
optimization algorithm. Also we see that even when the total system
energy is same (= 20), for four sensors theE∗

DD is much better than
for two sensors for the same PF A.

Analysis Simulation
α L (β∗, γ∗, b∗) E∗

DD (PF A, E∗

DD , Eavg)
5e-5 2 (15.17, 7.88, .69) 47.59 (4.7e-5, 47.06, 10.05)
1e-5 2 (16.54, 8.13, .60) 55.60 (1.1e-5, 55.04, 10.01)
5e-5 4 (21.00, 6.76, .71) 30.0 (4.0e-5, 29.80, 05.02)
1e-5 4 (22.00, 7.32, .65) 34.3 (0.9e-5, 34.02, 05.01)

Table 2. Performance of Optimal DualCUSUM : Comparison of
simulation with analysis form0 = 0,m1 = 0.75, σS = 1, σM = 1,
ρ = 0.005, I = 2 and LE0 = 20, .

5. CONCLUSIONS AND FUTUREWORK
We have proposed a Page’s CUSUM based energy efficient scheme
which uses the physical layer fusion technique and CUSUM at the
sensors as well as at the fusion center. We have analyzed the FA per-
formance of the scheme and computed the approximate mean delay
using Monte Carlo techniques. The analytical results obtained give
us a good approximation which can be used to choose the optimal
parameters. We have also compared our scheme with the scheme
proposed in [17] for a fixed energy constraint. The comparisons
show that our scheme saves a lot more energy for small values of
FA and uses it to improve on the detection delay.
At present we are working towards good approximations for

EDD, and some variants of DualCUSUM, and some analytical way
of solving for the optimal choice of parameters.
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