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ABSTRACT

In a reverberant scenario, phase transformed weighted algo-

rithms are more robust than Maximum Likelihood (ML) be-

cause of the insufficiency of the data model to incorporate re-

verberant information. This transformation has been applied

to General Cross-Correlation and Steered Response Power al-

gorithms; the latter has been shown to be more robust. For

a multiple known number of sources, both algorithms have

problems separating the sources that are close together be-

cause of the limitation caused by the resolution. Recently, an

approach was made using simple well-known statistical room

acoustics to model room reverberation, and another paramet-

ric approach called the Approximate Maximum Likelihood

was made that was designed for multi-source estimations. By

combining these methods, we developed an ML algorithm

that is suitable for multi-source target estimates in a rever-

berant room.

Index Terms— Direction of arrival estimation, Max-

imum likelihood estimation, Microphones, Architectural

acoustics

1. INTRODUCTION

The phase transform (PHAT) method was originally devel-

oped purely as an ad-hoc technique to avoid spreading or

smearing the delta function containing the time delay infor-

mation [1]. It is seen as one of the General Cross Correlation

(GCC) weights and often called GCC-PHAT. Since then, re-

searchers have shown that GCC-PHAT is more robust against

reverberation than the Maximum Likelihood (ML) approach,

and recently Gustafsson et al. showed that GCC-PHAT is op-

timal when using a model that incorporates reverberation [2].

The disadvantage of GCC is that it lacks inclusion of the

array geometry information that often is readily available.

Furthermore, to obtain the bearing/position estimate, GCC

will need an extra multilateration step. With known geometry,

we can form the Steered Response Power (SRP) by varying

the steering vector over the desired bearings/positions. The

estimate is then obtained by selecting the bearing/position

that corresponds to the highest SRP. Not only does the SRP

method perform better than the two-step GCC with multi-

lateration, when phase transformation is applied, it has been

shown to have superior performance over GCC-PHAT [3].

Aside from reverberation, we have developed a multi-

source ML estimator based on a parametric model with the

assumption that the noise is independent and identically dis-

tributed (i.i.d.). Then we apply Fourier transformation to

the data, and by Central Limit Theorem, the noise in the

frequency domain approaches a Gaussian distribution. In

practice, we apply the Discrete Fourier Transform (DFT).

This causes an edge effect that can be mitigated if the number

of samples is large enough and thus this algorithm is called

the Approximate Maximum Likelihood (AML) method [4].

Even in the SRP approach, multi-source bearing/position

estimation is possible if there is enough resolution, i.e., the

peaks are still separable. Of course, this assumes the knowl-

edge of the number of true sources ahead of time, which we

will assume available from this point in our discussion. In

AML, the multi-source estimation is performed by looking in

a multi-dimensional region, where the number of dimensions

corresponds to the number of sources. Hence, even when the

sources are very near each other, it is still possible to estimate

multi-source bearing/positions. However, the AML suffers

from reverberation because of the insufficiency of the model

in not incorporating reverberant information.

2. SOURCE AND ROOM REVERBERATION MODEL

In this section we introduce the multi-source data model from

[4] and the room reverberation model used in [2]. For a sim-

pler exposition, we will limit the model to a 2-D scenario and

far-field sources. For each M wideband sources, the angle

of arrivals will be denoted as θ = {θ1, . . . , θM}. We adopt

angle convention where East points to 0 degrees increasing in

a counter-clockwise direction. P sensors in an array, each at

position rp = [xp, yp]T are assumed to have omni-directional

response and are identical. The array centroid position is

shown by rc = 1
P

∑P
p=1 rp = [xc, yc]T . We use rc as the

reference point and define a signal model based on the rela-

tive time-delays from this position. The relative time-delay

of the mth source is expressed by t
(m)
cp = t

(m)
c − t

(m)
p =

[(xc −xp) cos θm +(yc − yp) sin θm]/v, where t
(m)
c and t

(m)
p

are the absolute time-delays from the mth source to rc and rp

respectively, where v is the speed of propagation. The data
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received by the pth sensor at time n is then

xp(n) =
M∑

m=1

s(m)(n − t(m)
cp ) + wp(n), (1)

for n = 0, ..., N − 1, p = 1, ..., P , and m = 1, ..., M , where

N is the length of the data vector, s(m) is the mth source

signal arriving at rc. t
(m)
cp is a real-valued number, and wp

is the zero mean i.i.d noise with variance σ2/N . We have

made the assumption that the signal strength received by all

the sensors is the same. This is a good approximation when

the distance from rc to the source is much larger than the

distance from rc to the sensors, which we will assume is true.

In a reverberant environment, the measured sensor p sig-

nals coming from source m can be modeled as

xp(n) =
∫ ∞

−∞
h(n − λ)s(m)(λ)dλ + wp(n), (2)

where h(n) is the impulse response of the room. The key

assumption is that the impulse response can be decomposed

as

h(n) = d(n) + r(n), (3)

where d(n) denotes the direct path, and r(n) corresponds to

diffuse sound propagation.

The sound pressure at a microphone is built up from the

direct path, plus several waves due to multiple reflections of

the original sound. Although these can be computed by solv-

ing a wave equation [5], at higher frequencies, the complexity

increases to a point where analysis is no longer feasible. To

model the high-frequency part of h(n), we will apply the the-

ory of diffuse sound fields. A diffuse sound field is present

when the following conditions are fulfilled [5] [2]:

A1 The dimensions of the room are large relative to the

wavelength of s(n). For the frequencies of interest (in

speech processing we are mainly interested in the band

300 to 3500 Hz), this condition is usually satisfied.

A2 The average spacing of the resonance frequencies of the

room must be smaller than one third of their bandwidth.

In a room with volume V (in m3 ), and reverberation

time T60 (in seconds), this condition is fulfilled for

frequencies that exceed the Schroeder large room fre-

quency Fs = 2000
√

T60/V .

A3 The source and the microphones are located in the inte-

rior of the room, at least a half-wavelength away from

the walls. Hence, the sound field at a wall-mounted mi-

crophone cannot be modeled as diffuse.

Given that conditions A1-A3 are satisfied, we can com-

bine eq. (1) - (3) and take a Discrete Fourier Transform (DFT)

to get

Xk = (Dk(θ) + Rk)Sk + Wk, (4)

where the data spectrum is Xk = [X1(ωk), ..., XP (ωk)]T ,

the steering matrix is Dk = [d(1)(ωk), ...,d(M)(ωk)], the

steering vector is d(m)(ωk) = [d(m)
1 (ωk), ..., d(m)

P (ωk)]T ,

d
(m)
p = e−j2πkt(m)

cp /N , the source spectrum is expressed by

Sk = [S(1)
k , ..., S

(m)
k ]T , and the noise is Gaussian Wk ∼

N (0, σ2IN/2) due to the Central Limit Theorem. Since the

spectrum is taken from a real value, only N/2 frequency

bins carry information, hence we will keep only the positive

frequency bins. We also denote T as transpose and H as

Hermitian throughout this article.

Gustafsson et al. [2] have shown that the coherence prop-

erties of R(f) with R(f + Δf) can be measured by a coher-

ence bandwidth given as ρ(T60) � 7
T60

Hz. Taking 0.1 second

sample duration means, each bin is separated by 10 Hz. Thus,

for T60 > 0.7, every frequency sample can be considered un-

correlated. If this condition applies, we can assume Rk to be

Gaussian random variable N (0, σ2
r) without resampling.

3. ALGORITHMS

In this section we will review briefly the formulation of SRP-

PHAT and then continue to derive ML estimate from (4).

Then we will compare their corresponding bearings or Di-

rection of Arrival (DOA) estimates in the next section.

3.1. Review of SRP-PHAT

SRP is based on filter and sum beamforming model repre-

sented by

JSRP (f) =
M∑

m=1

G(m)(f)S(m)(f)ej2πft(m)
cp , (5)

where G(m)(f) is chosen to be 1/|S(m)(f)| for m =
1, . . . ,M . At a given θ, we can find the corresponding

t
(m)
cp for all m. Then by steering the test θ from 0 to 2π, the

SRP-PHAT estimate is achieved by maximizing the following

function

JSRP−PHAT (θ) =
N/2∑
k=1

(
M∑

m=1

S
(m)
k

|S(m)
k |

e
j2πkt

(m)
cp (θ)
N

)
. (6)

Note that in (6) we sample the continuous frequency domain,

or apply DFT as an approximation. We will assume to have

a long enough sample duration to mitigate the edge effect of

the DFT.

3.2. Deterministic Source ML Estimate

If we assume {Sk}N/2
k=1 as deterministic, then the distribution

of Xk will be N (Dk(θ)Sk, (σ2
r tr(SkSH

k ) + σ2)IP ), where

IP is the P × P identity matrix and tr(.) denotes the trace.

Concentrating on the log-likelihood function with respect to
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V ar[Xk], the ML estimator can be obtained by minimizing

the following function

JAMLR =
N/2∑
k=1

log ||P⊥
k (θ)Xk||2, (7)

where the subscript (.)AMLR denotes the Approximate Maxi-

mum Likelihood for the Reverberant case (AMLR) algorithm,

and P⊥
k (θ) denotes the orthogonal complement projection to

the subspace of Dk(θ)

P⊥
k (θ) = IP − Dk(θ)D+

k (θ), (8)

where D+ = (DHD)−1DH is the Monroe-Penrose pseu-

doinverse. Note that eq. (7) is very similar to the one derived

in [2] and can be seen as the generalization to the multi-source

case.

3.3. Non-Deterministic Source ML Estimate

If we assume S
(m)
k ∼ N (0, σ

2(m)
s,k ) is Gaussian and un-

correlated among all m, k and dropping the dependencies,

{Xk}N/2
k=1 will have the following distribution

X ∈ N (0,Σ), Σ = DΛDH + (σ2
r tr(Λ) + σ2)IP , (9)

where Λk = diag[σ2(1)
s,k , . . . , σ

2(M)
s,k ], and diag denotes di-

agonalization. Then the ML estimator can be obtained by

minimizing the following function

J =
N/2∑
k=1

[
log qP−M + Ptr(Λ) + qM +

XΣ−1X
P

]
, (10)

where q = σ2
r tr(Λ) + σ2, and the scalar P is the number of

sensors in an array (not the projection matrix). Unfortunately

(10) cannot be concentrated with respect to σ2
s , σ2

r , or σ2. Be-

cause the complexity off estimating simultaneous values be-

comes prohibitively large, we will not include this algorithm

in the comparison.

4. SIMULATION

We simulate the conference room using the Allen-Berkley

room reverberant model [6]. For ease of exposition, we will

limit the discussion to a two-dimensional room with a reflec-

tion coefficient β of 0.9. The room size is 6 by 9 meters and

we set the origin at the lower left corner of the room.

The microphone array is a uniform circular array with a

radius of 0.2 m with 8 microphone elements. The first source

is a male human voice with a dominant spectrum of about 700
Hz, and the second source is a female voice with a dominant

spectrum of about 1000 Hz. To generate the source position

we follow similar methods like in [2]. First, we fix the dis-

tance and the source DOAs, and then generate the placement

(a) Average DOA (degree)

Sim. # True SRP-PHAT AMLR
1 (60,80) (61.0,79.0) (61.6,79.1)

2 (60,75) (61.0,73.5) (61.4,74.6)

3 (60,70) (61.1,37.9) (60.2,68.9)

(b) RMS Error (degree)

Sim. # True SRP-PHAT AMLR
1 (60,80) 1.5 1.1

2 (60,75) 5.1 1.1

3 (60,70) 26.8 5.8

Table 1. Simulated two source DOA estimate (θ1, θ2) with a

source-sensor distance of 3 meters for both sources.

of the array and the sources randomly in the allowable space

as described by condition A3 (see Section 2).

For each fixed DOAs, at least 50 different realizations of

the sources are generated. Since the statistical properties of

the transfer function are independent of the time-instant of

observation, the random realization allows the variations to

be captured in the simulation. Table. 1 shows the mean value

of the estimate and the Root-Mean-Square (RMS) error sum-

mary of the simulated angles when fixing the distance of both

sources at 3 meters from the sensor array.

From Table 1 we can observe that when the source an-

gles are close to each other (as in Sim. 3), SRP-PHAT no

longer has two distinct lobes, so it picks another lobe that cor-

responds to the next strongest reverb path. On the other hand,

AMLR is able to address the two sources, although with a

larger error compared to the first two experiments.

In order to perform a good comparison without having

sporadic errors from reverberation, we limit the search to be

±20 degrees for both sources. This treatment will allow us

to compare the true lobe of both algorithms while avoiding

strong reverberation errors, which can be mitigated by other

means, see for example [7].

Since there is no distinction between the first source and

the second source, there are several ways to determine the er-

ror computation. We choose the errors that resulted in the

smallest sum of the absolute errors among the possible per-

mutations and treat both source errors as a single error vector

for RMS computation.

5. EXPERIMENT

We use a conference room at UCLA Engineering IV building

with a dimension of 6 × 9 × 2.6 meters, Fig. 1. The array

center is at (2,2) meters, and its 90 degrees point to position

(2,9). The first and second sources are male and female voices

respectively, as described in the simulation section. The first

source is placed at (2,7), (3,7) and (3.5,7) meters, while the

second source is held fixed at (4,7) meters. All the sources

and microphones are elevated to 1.4 meters above ground.
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(a) Photograph

6 m

9
m

Source 1 Source 2

Sensor

(b) Floor Plan

Fig. 1. Conference room used for the experiment

In each experiment, we run both the SRP-PHAT and the

AMLR algorithm. Since we have information on the array

position and the speaker is more likely to be at the front of

the room (where the source positions are), we can reduce the

search space from 0-360 degrees to 50-110 degrees. This way

we eliminate strong reflections that cause both algorithms to

report erroneously. Table 2 reports the estimates.

The SRP-PHAT at Exp. 3 only report one angle since it

can only find one peak because the two sources are too close

to each other. If we did not restrict the search space in Exp. 1,

the SRP-PHAT second estimate would be 45.1 degrees, and in

the Exp. 3, the AMLR second estimate would be 44 degrees.

Fig. 2 shows the likelihood map of the AMLR in Exp 3. It

is interesting to see that there are two main dominant lobes

(the likelihood is symmetric) corresponding to the two pos-

sible source locations. The false one at (71, 44) degrees is

formed because there is a strong signal coming at 44 degrees.

By observing the room geometries, we know this angle is the

reflection coming from the right wall. Hence it is possible to

use an algorithm, such as the image model that finds the true

source based on the room information, see for ex. [7].

6. CONCLUSION

We have investigated a room reverberation model using a

well-known statistical room acoustic and developed a multi-

source ML DOA estimator. We further considered two source

models and found the ML estimate for the deterministic

model and called this algorithm AMLR. Meanwhile, the

non-deterministic model has complexity that grows rapidly

because there are many parameters that have to be simultane-

ously estimated.

Exp. # True SRP-PHAT AMLR
1 (90,68.2) (89.3,66.8) (89.5,66.8)

2 (78.7,68.2) (85.3,68.3) (74.8,66.5)

3 (73.3,68.2) (69.5) (70.9,59.6)

Table 2. DOA estimate in degrees (θ1, θ2)

Degree

D
eg
re
e

30 40 50 60 70 80 90
30

40

50

60

70

80

90

Fig. 2. AMLR likelihood function for Exp. 3 from 30 to 99

degrees. The darkest point is the most probable.

From the comparisons both in simulations and in the

physical experiments, we have shown the AMLR method that

is able to distinguish sources when the SRP-PHAT method

failed, although we also observed an increase in estimation

errors when sources are near each other. When the sources are

farther apart, both algorithms are comparable in performance.

The only disadvantage of AMLR is that it has relatively

high computational complexity. While SRP-PHAT just needs

to perform a single dimensional search, AMLR requires

M dimensional search.
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