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ABSTRACT
In the context of the Direction-Of-Arrival (DOA) estimation prob-
lem, we can sometimes assume the a priori knowledge of M − S
DOA among M . Some authors have propose to incorporate this a
priori knowledge to better estimate the DOA of interest (ie., the un-
known ones). In a previous work, the authors have proposed two
prior MinNorm schemes based on oblique projection which allow
the integration of this prior-knowledge. In particular, numerical and
theoretical expressions of the variances have been derived. In this
work, we go further into the analysis already given. We first focus on
the asymptotic (large number of sensors) behavior of the standard,
the constrained and the prior versions of the MinNorm algorithm
and we show that in this case the exploitation of a prior-knowledge
is not beneficial. Next, we derive closed-form approximations of the
variance of these algorithms in case of two closely-spaced sources
for small/moderate number of sensors and we show that the prior-
MinNorm algorithms based on oblique projection is much more in-
sensitive to the proximity of the DOA as compared to the standard
and the constrained MinNorm algorithms. Finally, these theoreti-
cal analysis are checked against computer simulations by means of
Monte-Carlo runs.
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1. INTRODUCTION

Directions-Of-Arrival (DOA) of narrow-band sources estimation is
one of the central problems in passive radar, sensor sonar, radio-
astronomy, and seismology. This problem has received considerable
attention in the last 30 years, and a variety of techniques for its so-
lution have been proposed. We assume that we have the a prior-
knowledge of M − S DOA among a total number of M . Remark,
we can encounter this type of prior-knowledge in biomedical appli-
cations [4] or in RADAR processing [6]. Consequently, the under-
lying model can be viewed as a signal of interest plus interference
model [1]. Based on this model, we can distinguish two main ap-
proaches to integrate this prior-knowledge into estimation schemes:
(i) orthogonal projection of the noisy observation on the interfer-
ence subspace [6, 4] referred as an orthogonal deflation of the signal
subspace and (ii) oblique projection of the noisy observation onto
the interference subspace [2, 8, 9] referred as oblique deflation of the
signal subspace. Results point out in [8, 9] show that the most suit-
able approach to integrate this type of prior-knowledge is the oblique
deflation. So, the authors have proposed in a previous work [9] two
prior-knowledge MinNorm schemes and they have derived theoret-
ical variances of these algorithms. In this work, we go further into

the analysis of these schemes and explain with more detail why the
oblique deflation is efficient in the context of closely-spaced DOA
for small/moderate number of sensors. In particular, we propose in
this paper additional theoretical studies for (i) asymptotic analysis,
i.e. when the number of sensors grows to infinite, and for (ii) a
closely-spaced analysis for two DOA.

2. PARAMETRIC MODEL

Assume there are M narrowband plane waves (sources) simultane-
ously incident on an L sensor Uniform Linear Array (ULA). De-
fine S signals of interest and the M − S interfering signals, consid-
ered as structured interferences. Let x�(t) be the noisy observation
on the �-th sensor for the t-th snapshot. Then, the array response,
x(t) = [x1(t) . . . xL(t)]T , for the t-th snapshot is

x(t) = Aα(t)︸ ︷︷ ︸
Signal of interest

+ Bβ(t)︸ ︷︷ ︸
Structured Interference

+ n(t)︸︷︷︸
Unstructured noise

(1)

where the L-sensor steering vector is defined by p(ω) =[
1 eiω . . . ei(L−1)ω

]T
in which ω = −2π d

c
sin(θ) is the

spatial pulsation with θ the DOA, d the inter-sensor distance,
c the wavelength. The sources are stacked in two vectors
α(t) = [α1(t) . . . αS(t)] and β(t) = [αS+1(t) . . . αM−S(t)]
where αm(t) denotes the m-th sources for the t-th snapshot and
A = [p(ω1) . . . p(θS)] and B = [p(ωS+1) . . . p(ωM−S)] are
the corresponding steering manifolds. The noise vector, n(t) =
[n1(t) . . . nL(t)]T , in which each n�(t) is the contribution of the
noise on the �-th sensor which is assumed to be a complex zero-
mean temporally and spatially white Gaussian process of variance
σ2. The number of sources, M , is assumed to be known or previ-
ously estimated. Finally, the model for T snapshots is

X = AΛα + BΛβ + N (2)

where X = [x(1) . . . x(T )], Λα = [α(1) . . . α(T )]T , and Λβ =
[β(1) . . . β(T )]. As S < M , matrix A (respectively B) is a rank-S
(rank-(M − S)) matrix. We name R(A) the deflated signal sub-
space since its dimension is M − S which is smaller than the di-
mension of the signal subspace R(Z) where Z = [A B]. We have
R(A) ⊆ R(Z).
We assume that the sources associated to the known and to the un-
known parts are uncorrelated. Consequently, the spatial covariance
matrix is block-diagonal and is defined according to
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RX = E(XXH) = SX + σ2I (3)

where SX = SA+SB , with SA = ARΛαAH and SB = BRΛβ BH

where RΛα = E(ΛαΛH
α ), RΛβ = E(ΛβΛH

β ) and E(.) denotes the
mathematical expectation.

3. WEIGHTED PRIOR-MINNORM (WP-MINNORM),
PRIOR MINNORM (P-MINNORM) AND CONSTRAINED

MINNORM (C-MINNORM) ALGORITHMS

The optimization criterion of the WP-MinNorm, P-MinNorm and
C-MinNorm algorithms are

arg min
ω

|fWP(ω)|2 where fWP(ω) = 1 − eT
1 E(A B)p(ω) (4)

arg min
ω

|fP(ω)|2 where fP(ω) = eT
1 P⊥

A p(ω) (5)

arg min
ω

|fC(ω)|2 where fC(ω) = eT
1 P⊥

Z p(ω) (6)

with E(A B) the oblique projector [1] on R(A) along R(B) and

P⊥
Z = I − ZZ†, P⊥

A = I − AA† where .† denotes the Moore-
Penrose pseudo-inverse and e1 is the first column of the identity ma-
trix. Note that expression (6) provides a new interpretation of the
C-MinNorm, initially presented in [7].
Obviously, projectors E(A B), P⊥

Z and P⊥
A are unknown quantities

as long as R(A) is unknown. In [9], a subspace-based algorithm
which assumes that an available estimation of R(B) is presented.
This approach is relied to the Singular Value Decomposition of ma-
trix P⊥

B RX where P⊥
B = I − BB†.

4. ANALYSIS OF THE VARIANCES

Due to the finite number of snapshots, an estimation error is induced
by considering the sample covariance. In reference [9], the theoret-
ical variances of the WP-MinNorm, P-MinNorm, and C-MinNorm
algorithms has been derived. We recall in the following these results.

VarWP(ω̂i) = σ2 (eT
1 (P⊥

Z + Ω)e1) (p(ωi)
HS†

ARAS†
Ap(ωi))

2T |eT
1 E(A B) p′(ωi)|2 (7)

VarP(ω̂i) = σ2 (eT
1 P⊥

A e1) (p(ωi)
HS†

ARAS†
Ap(ωi))

2T
∣∣eT

1 P⊥
A p′(ωi)

∣∣2 (8)

VarC(ω̂i) = σ2 (eT
1 P⊥

Z e1) (p(ωi)
HS†

ARAS†
Ap(ωi))

2T
∣∣eT

1 P⊥
Z p′(ωi)

∣∣2 (9)

where Ω = B
(
BHP⊥

A B
)−1

BH and RA = SA + σ2I and

p′(ωi) = ∂p(ω)
∂ω

∣∣∣
ω=ωi

.

In addition, the variance of the MinNorm algorithm can be found
in [5] and in the sequel, we denote it by VarMN(ω̂i). In this work,
we go further than the analysis presented in [9], by providing more
insights on expressions (7)-(9). More precisely, we study these
expressions (i) for a large number of sensors, L and (ii) for a
small/moderate L but for closely-spaced DOA.

4.1. Asymptotic Variances

The asymptotic variances, i.e., for a large number of sensors of the
considered algorithms are given in the following theorem.

Theorem 1 For a large number of sensor (large L) and for a
sufficient SNR, the asymptotic variance of the WP-MinNorm, P-
MinNorm, C-MinNorm and MinNorm algorithms, are given by

VarWP(ω̂i) = VarP(ω̂i) =
2(L − S)

TL3 SNRi
, (10)

VarC(ω̂i) = VarMN(ω̂i) =
2(L − M)

TL3 SNRi
(11)

where SNRi =
σ2

i
σ2 for i ∈ [1 : S] with σ2

i the variance of the i-th
source.

Proof : see Appendix 7.1

Let us define

ρ =
VarWP(ω̂i)

VarMN(ω̂i)
=

VarP(ω̂i)

VarMN(ω̂i)
=

VarWP(ω̂i)

VarC(ω̂i)
=

VarP(ω̂i)

VarC(ω̂i)
=

L − S

L − M
.

So, we have:

• If M � S, then ρ � 1 and

VarWP(ω̂i) = VarP(ω̂i) � VarC(ω̂i) = VarMN(ω̂i).

• If M = O(S) or L � M then ρ ≈ 1 and

VarWP(ω̂i) = VarP(ω̂i) ≈ VarC(ω̂i) = VarMN(ω̂i).

In conclusion, for large L, the exploitation of the a priori knowl-
edge is not determinant.

4.2. Variance in the case of two closely-spaced DOA

Now, consider the two signals case (one of interest and one as inter-
ference) according to A = p(ω1) and B = p(ω2). We assume that
the spatial pulsation ω1 and ω2 are close in the sense that

Δω = ω2 − ω1 � 1.

Consequently, p(ω2) can be well approximated by a first order
Taylor expansion according to

p(ω2)
1
= p(ω1) + Δωp′(ω1)

where p′(ω1) is the first order derivative of the steering vector con-
sidered at the spatial pulsation ω1. So, based on the above first-order
approximation and on expressions (7)-(9), it is straightforward1 to
derive the following theorem.

Theorem 2 For two closely spaced DOA/spatial pulsation with
Δω � 1, we have the following variances:

VarWP(ω̂1) =
12

L(L2 − 1)
ξ̄1 (12)

VarP(ω̂1) =
4

L(L − 1)
ξ̄1 (13)

VarC(ω̂1) =
144

Δ2
ωL(L2 − 1)(L − 2)

ξ̄1 (14)

VarMN(ω̂1) =
144

Δ2
ωL(L2 − 1)(L − 2)

ξ1 (15)

1Due to the lack of space, the whole calculus are not given in this article.
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where ξ̄1 = 1

2T SNR1

(
1 + 1

SNR1

1
L

)
and where ξ1 =

1

2T SNR1

(
1 + 1

SNR1

12
Δ2

ωL(L2−1)

)
.

Proof : see Appendix 7.2

As we can see on the above expressions, the C-MinNorm and the
standard MinNorm are very sensitive to quantity Δω . This is not the
case for the proposed schemes. Furthermore, it is straightforward to
see that

VarWP(ω̂1)

VarC(ω̂1)
= VarWP(ω̂1)

VarMN(ω̂1)

VarP(ω̂1)

VarC(ω̂1)
= VarP(ω̂1)

VarMN(ω̂1)

⎫⎬
⎭ = O(Δ2

w)

and thus the prior versions of the MinNorm algorithm have a much
smaller variance than the C-MinNorm or the standard MinNorm. In

addition, we have
VarWP(ω̂1)

VarP(ω̂1)
≈ 3

L+1
and for L > 2 we have

VarWP(ω̂1) < VarP(ω̂1). (16)

Consequently, the WP-MinNorm has a better accuracy than the P-
MinNorm. We will see that the numerical simulations confirm this
fact.

5. NUMERICAL SIMULATIONS

The context of the numerical simulation is a Uniform and Linear
Array (ULA) with a half wavelength with T = 100 snapshots. For
all experiments, we denote by ω = [ω1 ω2] rad the vector of spatial
pulsations in radian, where ω2 is the known spatial pulsation and ω1

the one of interest. Furthermore, for each experience we plot the
Standard deviation (Std.), defined as the square root of the variance,
of spatial pulsation of interest ω̂1, by means of 500 Monte-Carlo
trials.

5.1. Illustration of Theorem 1

In this simulation part we focus on the illustration of Theorem 1. To
this end, we test the prior-knowledge algorithms with a large number
of sensor (L = 100) and we compare the practical values to theoreti-
cal expressions. The analysis of Fig. 1-a shows the good fit between
practical and theoretical values when the DOA are separated by 4
degrees. Therefore, this confirms the results given in Theorem 1, i.e.
for asymptotic regime the prior-knowledge does not improved the
estimation of the DOA of interest with respect to the C-MinNorm
and the standard MinNorm. Nevertheless, we do recall that even if
all the algorithms have the same accuracy in that regime, only the
prior MinNorm algorithms are able to estimate only the DOA of in-
terest. This is not the case for the other algorithms.

5.2. Illustration of Theorem 2

In the context of this simulation, we illustrate Theorem 2 where we
have considered two sources with closely-spaced DOA (separated by
1 degree) for small/moderate number of sensors. The conclusions
given by Fig. 1-b agree with those of Theorem 2 in the sense, the
C-MinNorm is slightly more accurate than the standard MinNorm
algorithm, showing ξ̄1 < ξ1 in Theorem 2. So, for sufficient SNR,
all practical simulations are in accordance with theoretical expres-
sions. In addition, we can check that the WP-MinNorm is actually
the best prior-knowledge algorithm since it has the highest accuracy.
Finally, we can conclude that the prior-knowledge schemes based on
oblique processing are less sensitive to the proximity of the DOA.
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Fig. 1. (a) Std. Vs SNR with ω = [−0.43 ,−0.65] rad and L =
100 sensors, (b) Std. Vs SNR, with ω = [−0.43 ,−0.49] rad and
L = 18 sensors.

6. CONCLUSION

In the context of the Direction-Of-Arrival (DOA) estimation prob-
lem, we can sometimes assume the a priori knowledge of M − S
DOA among M . In this paper, we compare two different ways to
integrate this knowledge into the MinNorm algorithm. Namely, the
orthogonal and the oblique deflation of the signal subspace. Toward
this end, we derive theoretical closed-form expressions of the vari-
ance of the standard, constrained and prior versions of the MinNorm
algorithms. We show that the oblique deflation is more suitable than
orthogonal deflation to integrate a prior-knowledge into the Min-
Norm algorithm. Conversely, in the context of asymptotic analysis
(large number of sensor), these two schemes are equivalent.

7. APPENDIX

7.1. Proof of Theorem 1

Notice that due to the lack of space, the proof given in the se-
quel is not exhaustive. We use now property on the asymp-
totic orthogonality of pure exponential, i.e., pH(ωi)p(ωj) =

Lδi−j , pH(ωi)p
′(ωj)

L→∞−→ iL(L−1)
2

δi−j . Therefore, we have

eT
1 P⊥

A e1
L→∞−→ L−S

L
, since the dimension of R(A) is S and

eT
1 P⊥

Z e1
L→∞−→ L−M

L
since the dimension of R(Z) is M . In ad-

dition, E(A B) → PA and P⊥
Z + Ω → I − PB − PA + PB = P⊥

A

for large L. We have

|eT
1 PAp′(ω)|2

|eT
1 PZp′(ω)|2

}
L→∞−→ (L − 1)2

4
.

Next, we use a result extracted from [3] to rewrite
p(ω)HS†

ARAS†p(ω) (common to (7)-(9)) according to SNRi.
We find, then

p(ω)HS†
ARAS†p(ω) =

1

σ2
i

+
1

σ2
i

[
(AHA)−1

]
ii

1

SNRi
. (17)

Using the above properties in expressions (7)-(9), it comes for the
i-th pulsation of interest

VarWP(ω̂i) = VarP(ω̂i) =
2(L − S)

(
1 + 1

SNRi L

)
TL3 SNRi

(18)
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and

VarC(ω̂i) = VarMN(ω̂i) =
2(L − M)

(
1 + 1

SNRi L

)
TL3 SNRi

. (19)

Finally, since L � 1 and for a sufficient SNR, then 1

SNRi L
� 1.

7.2. Proof of Theorem 2

First, note

p(ω2)
Hp(ω2) = L + Δ2

ω
L(L − 1)(2L − 1)

6

pH(ω1)(p(ω1) + Δωp′(ω1)) = L + iΔω
L(L − 1)

2

p(ω2)
Hp′(ω1) = i

L(L − 1)

2
+ Δω

L(L − 1)(2L − 1)

6
.

Using the above expressions, we can characterize the following
terms involved in (7)-(9) according to

|eT
1 P⊥

Z p(ω1)
H |2 =

Δ2
ω(L − 1)2(L − 2)2

144
, (20)

eT
1 P⊥

Z e1 =
(L − 1)(L − 2)

L(L + 1)
, (21)

eT
1 P⊥

A e1 =
L − 1

L
(22)

|eT
1 P⊥

A p′(ω1)|2 =
(L − 1)2

4
(23)

In addition, we have to evaluate the following quantity:

eT
1 E(p(ω1) p(ω2))p

′(ω1) =

eT
1 p(ω1)︸ ︷︷ ︸

=1

(
p(ω1)

HP⊥
p(ω2)p(ω1)

)−1

︸ ︷︷ ︸
→(i)

p(ω1)
HP⊥

p(ω2)p
′(ω1)︸ ︷︷ ︸

→(ii)

(24)

where

• The term indexed by (i) in the above expressions involves

(
p(ω2)

Hp(ω2)
)−1 1

=
1

L

(
1 − Δ2

ω
(L − 1)(2L − 1)

6

)
(25)

and thus(
p(ω1)

HP⊥
p(ω2)p(ω1)

)−1 1
=

12

Δ2
ωL(L2 − 1)

. (26)

In addition, remark that eT
1 Ωe1 =

(
p(ω1)

HP⊥
p(ω2)p(ω1)

)−1
.

• The second term, indexed by (ii) is

p(ω1)
HP⊥

p(ω2)p
′(ω1)

1
= Δω

L(L2 − 1)

12
. (27)

Finally, a first-order approximation of the square modulus of ex-
pression (24) is given by

|eT
1 E(A B)p

′(ω)|2 =

(
12

Δ2
ωL(L2 − 1)

Δω
L(L2 − 1)

12

)2

=
1

Δ2
ω

. (28)

Due to the proximity between ω1 and ω2, matrix
(
ZHZ

)−1
in-

volved in p(ω1)
HS†

XRXS†
Xp(ω1) is no more equal to 1

L
I , con-

versely (p(ω1)
Hp(ω1))

−1 remains unchanged and equal to 1
L

. So,

by using 2 × 2 inversion matrix formula, we give the expansion of
(ZHZ)−1 and it yields

(
ZHZ

)−1 2
=

12

Δ2
ωL(L2 − 1)

[
1 −1 − iΔω

L−1
2

−1 + iΔω
L−1

2
1

]
.

Therefore, we substitute
[
(ZHZ)−1

]
(11)

= 12
Δ2

ωL(L2−1)
into (17)

generalized to the whole subspace R(Z), and we obtain

p(ω1)
HS†

XRXS†
Xp(ω1) =

1

σ2
1

(
1 +

12

Δ2
ωL(L2 − 1)

1

SNR1

)
=

2T

σ2
ξ1.

Since (AHA)−1 remains unchanged in (17) we have straightfor-
wardly

p(ω1)
HS†

ARAS†
Ap(ω1) =

1

σ2
1

(
1 +

1

L SNR1

)
=

2T

σ2
ξ̄1.

The last process to do is to substitute all the terms defined into
theoretical expressions (7)-(9) and it comes

VarWP(ω̂1) =

(
Δ2

ω
12

L(L2 − 1)Δ2
ω

+
(L − 1)(L − 2)

L(L + 1)

)
ξ̄1

VarP(ω̂1) =
4(L − 1)

L(L − 1)2
ξ̄1

VarC(ω̂1) =
144(L − 1)(L − 2)

Δ2
ωL(L + 1)(L − 1)2(L − 2)2

ξ̄1

VarMN(ω̂1) =
144(L − 1)(L − 2)

Δ2
ωL(L + 1)(L − 1)2(L − 2)2

ξ1.

Finally, a basic manipulation completes the proof.
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