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ABSTRACT
This paper investigates the direction-of-arrival (DOA) esti-
mation of multiple narrowband sources in the presence of
nonuniform white noise with an arbitrary diagonal covari-
ance matrix. While both the deterministic and stochastic
Cramér-Rao Bound (CRB) and the deterministic Maximum-
Likelihood (ML) DOA estimator under this model have been
derived in [1], the stochastic ML DOA estimator under the
same setting is still not available in the literature. In this
paper, a new stochastic ML DOA estimator is derived. Its
implementation is based on an iterative procedure which step-
wise concentrates the log-likelihood function with respect to
the signal and noise nuisance parameters. A modified inverse
iteration algorithm is also presented for the estimation of the
noise parameters. Simulation results have shown that the
proposed algorithm is able to provide significant performance
improvement over the conventional uniform ML estimator
in nonuniform noise environments and require only a few
iterations to converge to the nonuniform stochastic CRB.

Index Terms— Direction of arrival estimation, Maxi-
mum likelihood estimation

1. INTRODUCTION

Direction of arrival (DOA) estimation has been one of the
central problems in array signal processing. While a wide
variety of high performance DOA estimators have been pro-
posed in the past few decades, the Maximum Likelihood
(ML) estimator plays an important role among these tech-
niques. Many of the proposed ML estimators are derived
from the uniform white noise assumption[2, 3], in which
the noise process of each sensor is assumed to be spatially
uncorrelated white Gaussian with identical unknown vari-
ance. It is shown that under this assumption the estimates
of the nuisance parameters can be expressed as a function
of DOAs[4, 5, 6], and therefore the number of independent
parameters to be estimated can be substantially reduced.
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This uniform white noise assumption may be unrealistic.
For a sparsely placed sensor array, the noise at each sensor can
be assumed to be spatially uncorrelated but the noise power
of each sensor can still be different due to the nonuniformity
of sensor noise or the imperfection of array calibration. In
this case, the noise covariance matrix should be modeled as a
general diagonal matrix with non-identical diagonal elements.
The deterministic and stochastic CRBs for the considered

DOA estimation problem are first derived by Pesavento et
al.[1]. In order to mitigate the burden of the straightforward
implementation of the maximum likelihood DOA estimator,
a new deterministic MLE based on the stepwise concentra-
tion is also proposed[1]. However, to the best of our knowl-
edge, no similar work has been carried out for the stochastic
case. In this paper, we propose a new stochastic maximum-
likelihood DOA algorithm under the same noise model and in
some sense “complete” the understanding of this problem.
Throughout this paper, we denote the superscripts T , ∗,

H , and † as transpose, conjugate, conjugate transpose, and
pseudo inverse of a matrix. The operator diag{v} denotes
the diagonal matrix with the vector v as the the main diago-
nal, and diag{X} denotes the column vector formed from the
elements of the main diagonal of square matrix X. In addi-
tion, tr{·} and |·| denote the trace and determinant of a square
matrix respectively.

2. SIGNAL MODEL

Let there be M narrowband sources in the far field of a P -
element sensor array. For simplicity, we assume the sources
and the array lie in the same plane, and denote θm as the DOA
of the mth source with respect to the array centroid, where
m = 1, · · · ,M . The array output y(t), observed at the tth
snapshot can then be modelled as

y(t) = Ax(t) + e(t), t = 1, · · · , N, (1)

where x(t) = [x1(t), · · · , xM (t)]T and and e(t) are the sig-
nal and the noise vector observed at the tth snapshot respec-
tively, and A = [a(θ1), · · · ,a(θM )] is the steering matrix. It
will be assumed that the geometry of the sensor array is such
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that A is full rank for all the DOAs of interest. As a result,
AHA will always be positive definite.
In this paper, we investigate the case where the sen-

sor noise of each channel is a spatially uncorrelated white
Gaussian random process with covarianceQ = diag{σ2

1
, · · · , σ2

P },
where σ2

p is the noise variance of the pth sensor. The signal
waveform x(t) is modeled as a zero-mean Gaussian process
with covariance matrix Rx, and it follows immediately that
y(t) is also a zero mean Gaussian random process with co-
varianceRy = ARxA

H + Q.

3. MAXIMUM-LIKELIHOOD DOA ESTIMATION

Under the signal model defined in the previous section, we
can derive the joint log-likelihood function of the unknown
parametersΨ = {Θ,Rx,Q} as

L(Ψ) = g(S,Ry) = −N{log |Ry| + tr(Ry
−1S)}, (2)

where S = 1

N

∑N
t=1

y(t)y(t)H is the sample covariance ma-
trix of the array output.
The maximum-likelihood estimate for Ψ can then be ob-

tained by solving

Ψ̂ = arg max
Ψ

L(Ψ). (3)

Clearly the search space of solving (3) is huge (of dimension
M +M2 +P ), and therefore we seek to reduce the optimiza-
tion problem since the estimation ofΘ is our only interest.
We first maximize (3) with respect toRx for fixedΘ and

Q. Taking partial derivatives of L(Ψ) with respect to [Rx]i,j
and setting it to zero, we obtain a necessary condition for the
extremum point

AHR−1

y [S − Ry]R−1

y A = 0. (4)

For more detailed derivation, see [5].
Following a similar derivation as [7], the optimalRx that

solves (4) is obtained as

R̂x = [ÃHÃ]−1[ÃH S̃Ã − ÃHÃ][ÃHÃ]−1, (5)

where Ã = Q−1/2A and S̃ = Q−1/2SQ−1/2.
Substituting Ry of (2) by AR̂xA

H + Q, the maximum
likelihood estimate forΘ andQ can be obtained by maximiz-
ing

L(Θ,Q) = −N log |Q1/2{PÃS̃PÃ − PÃ + IP }Q
1/2|

−Ntr{S̃} + Ntr{PÃS̃}, (6)

where PÃ = Ã[ÃHÃ]−1ÃH . Further concentration over
Q seems to be analytically impossible [7] which prevents us
from further simplifications.
At the same time, we can approach the problem by fixing

Θ and Rx in (2) and solve for an estimator for Q that maxi-
mizes L(Ψ). Denote q = diag{Q} and qp as the pth element

of q, then the pth element of the gradient vector∇qL(Ψ) can
expressed as

[∇qL(Ψ)]p = −Ntr{[R−1

y − R−1

y SR−1

y ]Ep,p}, (7)

where Ei,j is a P ×P matrix with the (i, j)th element equals
to 1 and 0 elsewhere. Setting ∇qL(Ψ) to zero, a necessary
condition for the extremum point is obtained as

[R−1

y − R−1

y SR−1

y ]p,p = 0, p = 1, · · · , P. (8)

It appears that (8) is a rather complicated function of Q and
therefore no analytical solution seems to be available.
To this end, a new maximum-likelihood DOA estimator

based on the stepwise concentration is proposed. The idea of
this technique is to numerically concentrate the log-likelihood
function by the following iterative procedure.

Iterative procedure of the proposed ML DOA estimator
Step 1. Iter = 1. Compute the MLEs (Θ̂,R̂x,Q̂) under

the uniform white noise assumption, summarized
as follows[6]:
Θ̂ = arg maxΘ log |AR̂xA

H + σ̂2IP |,
R̂x = A†SA†H − σ̂2[AHA]−1,
σ̂2 = tr{(IP − AA†)S}/(P − M),
Q̂ = σ̂2IP ,
whereA† = (AHA)−1AH .

Step 2. Use (Θ̂,R̂x,Q̂) as an initial estimate, and define
Â as the steering matrix evaluated at Θ̂.
Find a refined Q̂ so that the resultant
R̂y = ÂR̂xÂ

H + Q̂ increases the log-likelihood
function.

Step 3. Use the obtained Q̂ to find an improved Θ̂ through
Θ̂ = arg maxΘ L(Θ, Q̂) where L(Θ,Q) is
defined as in (6). Update R̂x using the latest
estimates (Θ̂,Q̂) through (5).
Iter = Iter + 1.
Repeat Step 2 and Step 3 until the algorithm
converges.

The parameter “Iter” denotes the index of iteration in the pro-
cedure. Many numerical algorithms can be used (or modified)
to solve the DOA estimation problem in step 1 and step 3.
The only remaining issue which has not been explained in
this paper is how step 2 is implemented. The modified inverse
iteration algorithm is proposed for this purpose.

4. MODIFIED INVERSE ITERATION ALGORITHM

In [8], a general method based on the inverse iteration algo-
rithm for estimating a covariance matrix of a specified struc-
ture is proposed. We modified this algorithm to solve step 2
and referred to it as the “modified inverse iteration algorithm”
in the following discussion.
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The basic idea of the this algorithm is as follows. Let
D denote the set of all P × P diagonal matrices. In each
iteration we start with some initial estimates, Θ̂, R̂x, and Q̂

and a ΔQ ∈ D is sought so that (S − ΔQ, R̂y) satisfies (8),
i.e.

[R̂−1

y (R̂y − (S − ΔQ))R̂−1

y ]p,p = 0 , p = 1, · · · , P, (9)

where R̂y = ÂR̂xÂ
H + Q̂. Note ΔQ is an improving di-

rection since

[∇qL(Ψ̂)]T Δq

N
= tr{[−R̂−1

y + R̂−1

y (S − ΔQ)R̂−1

y ]ΔQ}

+ tr{[R̂−1

y ΔQR̂−1

y ]ΔQ} (10)

= tr{[R̂−1

y ΔQR̂−1

y ]ΔQ} ≥ 0 (11)

The equality sign in (11) holds since the first term in (10) is
zero by construction.
The condition (9) is equivalent to

tr{[R̂−1

y SR̂−1

y −R̂−1

y (R̂y+ΔQ)R̂−1

y ]Ep,p} = 0, p = 1, · · · , P.
(12)

Putting (12) into a matrix form, thenΔq, the vector of the di-
agonal elements ofΔQ can be solved by the following linear
equation

HΔq = u, (13)
Hi,j = tr{Ej,jR̂

−1

y Ei,iR̂
−1

y }, (14)

ui = tr{[R̂−1

y SR̂−1

y − R̂−1

y ]Ei,i}, (15)

for all i, j = 1, · · · , P .
The overall procedure of the modified inverse iteration al-

gorithm is summarized as follows.

Modified inverse iteration algorithm
Step 1. Given some initial estimates (Θ̂,R̂x,Q̂), compute

an improving directionΔQ by (13).
Step 2. Backtracking Line Search

Set t = 1.
while
g(S, R̂y + tΔQ) < g(S, R̂y)+αt∇qg(S, R̂y)T Δq

or Q̂ + tΔQ < 0,
t = βt.
end

Step 3. Set new Q̂ as Q̂ + tΔQ

Repeat Step 1. to Step 3. until the algorithm
converges.

α and β are two constants satisfying 0 < α < 0.5 and 0 <
β < 1.

5. SIMULATION RESULTS

In this section, we present the simulation results of the pro-
posed stochastic ML estimator in comparison with the deter-
ministic ML estimator [1], the Power Domain (PD) method

[9], and the Approximate ML (AML) algorithm [10]. In or-
der to make a fair comparison, we initialize the AML algo-
rithm with the DOA estimates of the conventional stochastic
uniform ML estimator (same as the 1st iteration estimate of
the proposed stochastic ML algorithm). The nonlinear DOA
estimation required in step 1 and step 3 of the proposed iter-
ative procedure is solved through the Alternating Maximiza-
tion (AM) algorithm[11], implemented by an initial 1° coarse
grid search followed by the golden section fine search. De-
spite of the fact that AM guarantees only a local optimal so-
lution, excellent global convergence has been observed in this
type of DOA estimation problem[11].
The simulation settings and scenarios of this paper are

chosen to be identical to the settings in [1] in which the
DOA estimation of two uncorrelated narrow-band sources of
equal power using a Uniform Linear Array (ULA) is con-
sidered. The DOAs of the narrowband sources are set to
be 7° and 13° relative to the broadside respectively, and the
ULA is assumed to be omnidirectional with half-wavelength
inter-element spacing. In each simulation scenario, the Root-
Mean-Square-Errors (RMSEs) of the DOA estimates are
computed by averaging over 1000 Monte Carlo runs and
plotted along with the stochastic CRB[1].
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Fig. 1. Comparison of the DOA estimation RMSEs and
the stochastic CRB versus (a)number of snapshots, (b)SNR,
(c)number of sensors (d)WNPR.

In the first scenario, we consider the following noise co-
variance matrix

Q = σ2diag{[10.0, 2.0, 1.5, 0.5, 8.0, 0.7, 1.1, 3.0, 6.0, 3.0]}

and fix the array-SNR (ASNR)[1] to 5 dB. The RMSE perfor-
mance of the tested algorithms with respect to N are investi-
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gated and plotted as Fig. 1(a).
In the second scenario, same noise covariance matrix is

assumed. The number of snapshots are now fixed to 100 and
the RMSEs are plotted in Fig. 1(b) with respect to the SNR.
In the next two scenarios, we investigate how the nonuni-

formity of the sensor noise affects the performance of the
tested algorithms. In each Monte Carlo run, we fix the Worst-
Power-Noise-Ratio (WNPR)[1] and randomly choose two
sensor locations in the ULA, one with noise variance σ2

min

and the other σ2

max
= WNPRσ2

min
. The rest of the sensors

are assigned their noise variances according to a uniform
distribution U(σ2

min
, σ2

max
).

The RMSEs versus the number of sensors are investigated
in the third scenario. The ASNR, number of snapshots, and
the WNPR are set to be 20 dB, 100, and 65 respectively and
the simulation results are shown in Fig. 1(c).
In the last scenario, we set the ASNR, number of snap-

shots and the number of sensors to be 0 dB, 100, and 10
respectively. The RMSE performance versus the WNPR is
investigated and plotted in Fig. 1(d).
From Fig. 1(a)-(d), it can be observed that all the tested

nonuniform algorithms provide essential performance im-
provement over the conventional(uniform) ML estimator
in the nonuniform noise environment. The performance im-
provement of the proposed stochastic nonuniformML estima-
tor becomes more significant when the number of freedoms
(N times P ) increases. For small N and P , the performance
improvement is minor since the uniform ML estimator has
fewer parameters to estimate (although mismatched).
Among the tested nonuniform algorithms, the PD method

has the lowest complexity. However, the RMSE performance
of the PD method appears to be the worst and approaches to
that of the uniform ML estimator as the ASNR is sufficiently
large. The RMSE performance and the complexity of the pro-
posed stochastic nonuniform ML estimator is comparable to
that of the deterministic nonuniform ML estimator[1] since
both algorithms implement the idea of stepwise-concentration
and both require only two iterations to converge to a solu-
tion close to the CRB in the large sample and high ASNR
cases. The AML algorithm has a concentrated form yet a
higher complexity comparing to the complexity of PD and
the nonuniform ML estimators. However, despite of the high
complexity, the RMSE performance of the AML algorithm is
slightly higher than the deterministic and stochastic ML es-
timator which is probably due to the asymptotic approxima-
tions made in the derivations.

6. CONCLUSIONS

In this paper, we address the problem of estimating the DOAs
of multiple narrowband sources in the presence of unknown
nonuniform sensor noise. A new stochastic ML DOA estima-
tor has been derived and the performance of the proposed al-
gorithm is studied through extensive computer simulations. In

all settings, the proposed algorithm asymptotically converges
to the CRB within 2 iterations and therefore the complex-
ity is only a few times higher than the conventional uniform
ML estimator. Simulation results also demonstrate the per-
formance improvement in comparison with other nonuniform
algorithms for a variety of scenarios (number of snapshots,
SNR, number of sensors, and etc.).
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