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ABSTRACT
Direction-of-arrival estimation performance of MUSIC in the so-
called “threshold” area is often attributed to the “subspace swap”
phenomena. We show that the subspace swap condition can be ac-
curately predicted using recent results from Random Matrix Theory
(RMT) analysis, but that subspace “leakage” rather than full sub-
space swap is associated with the onset of performance degradation
in closely spaced multiple source scenarios. Prediction of the “sub-
space swap” phenomena is examined analytically and by the use of
Monte-Carlo simulation.

Index Terms— Direction of arrival estimation, adaptive arrays,
error analysis, maximum likelihood estimation.

1. INTRODUCTION

It has also been known for a long time that when the sample support
T (and/or signal-to-noise ratio) is insufficient, MUSIC performance
“breaks down” and rapidly departs from the CRB ( [1, 2]. The typ-
ical manifestation of this breakdown is the appearance of severely
erroneous DOA estimates (“outliers”) that dramatically degrade the
overall estimation accuracy. Studies of MUSIC performance break-
down have focused on the so-called “subspace-swap” phenomena,
whereby “the measured data is better approximated by some com-
ponents of the orthogonal subspace than by some components of the
signal subspace” [3, 4].

It has also been demonstrated [5] that, at least in multiple source
scenarios, there typically is a significant “gap” in required sample
support and/or SNR between the MUSIC-specific and ML-intrinsic
threshold conditions. Thus, potentially different mechanisms are re-
sponsible for MLE and MUSIC “breakdowns”, and the relevance of
subspace swap needs to be investigated.

2. SUBSPACE SWAP AND PERFORMANCE BREAKDOWN

Since MLE and MUSIC performance distinctions disappear in clas-
sic asymptotic studies [6], it is necessary to consider other analysis
approaches. In [7], an improvement in MUSIC “threshold perfor-
mance” has been derived by one of us (Mestre), based on recent
findings of the General Statistical Analysis (GSA) approach (also
known as Random Matrix Theory (RMT)) that considers different
asymptotic conditions:

lim
M,T→∞

M/T → constant < ∞. (1)

ie. where both the array dimension M and the number of snapshots
T grow without bound, but at the same rate.
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It is important to note that the G-MUSIC derivations and Monte-
Carlo simulations were conducted under conditions which “guaran-
tee separation of the noise and first signal eigenvalue cluster of the
asymptotic eigenvalue distribution of R̂ [7]. Therefore, G-asymptotically
the “subspace swap” phenomenon is precluded by these conditions,
and yet MUSIC and G-MUSIC breakdown was regularly observed
in the conducted Monte-Carlo trials under these conditions.

These distinctions between MUSIC/G-MUSIC and MLE thresh-
old conditions are supported with further simulation studies intro-
duced in Fig. 2 and based on a scenario with a M = 20-element uni-
form linear array (ULA), T = 15 training samples, and m = 4 in-
dependent equal power Gaussian sources (stochastic source model)
located at azimuth angles

θm = {−20o,−10o, 35o, 37o}, (2)

and immersed in white noise.

Fig. 1. Multiple-source estimation on a 20-element uniform linear
array with T = 15 training samples for MUSIC, G-MUSIC and
MLE. The SNR breakpoint (the “threshold”) decreases from around
20 dB for MUSIC to 17 dB for G-MUSIC, but is still dramatically
greater than the MLE-proxy (LF-PAC) threshold observed at around
0 dB.

One of the important results of GSA/RMT analysis relates to
convergence of the eigenvalue empirical distribution of the sample
covariance matrix, which tends almost surely to a deterministic prob-
ability density G-asymptotically. It has been shown [8] that for the
m-th eigenvalue λm, m = 1, . . . , M of the M distinct true eigen-
values (which occur with multiplicity Km) to be estimated (ie. for

the cluster of λ̂m to be well separated from the neighboring λ̂m−1

cluster), that

T/M > ξ(m) where ξ(m) = max
j∈(m,m−1)

β(j) (3)
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βj =
1

M

M∑
r=1

Kr

(
λr

λr − fj

)2

(4)

for 0 < j < M ; β(0) = β(M) = 0 (the “eigenvalue splitting
condition”). The factor fj , j = 1, . . . , M − 1 denotes the M − 1
real-valued solutions of

1

M

M∑
m=1

Km
λ2

m

(λm − fj)3
= 0 (5)

ordered as f1 > f2 > . . . > fmin. Specifically, the ratio of the
number of training samples T to the dimension of the array M nec-
essary to guarantee that the eigenvalue cluster associated with the
noise subspace eigenvalue λm+1 = . . . = λM is separated from
the rest of the eigenvalue distribution (the “subspace splitting condi-
tion”) is given by

T/M >
1

M

M∑
r=1

(
λr

λr − fmin

)2

(6)

where fmin denotes the minimum real-valued solution to equation
(5), considering multiplicity.

If the number of samples T per antenna element M is greater
than the right hand side of (6), one can ensure that signal and noise
sample eigenvalues will be separated in the asymptotic sample eigen-
value distribution, and a subspace swap will occur with probability
zero. It turns out that whenever there is asymptotic separation be-
tween signal and noise subspaces, one can effectively describe the
behavior of the sample eigenvalues and eigenvectors using the fol-
lowing result from [7]: Let x1, ...,xT be i.i.d. complex-valued col-
umn vectors from the M -variate distribution with circularly sym-
metric complex random variables having zero mean and covariance
matrix RM , that has the following eigen-decomposition

RM = EMΣMEH

M (7)

ΣM = diag(λ1, . . . , λm, λM , . . . , λM ) (8)

where λ1 � λ2 � . . . � λm are the true signal eigenvalues and EM

is the corresponding eigenvector matrix. Let the sample matrix Σ̂M

be specified as

Σ̂M =
1

T

T∑
j=1

xjx
H

j = ÊM Σ̂M ÊH

M . (9)

Consider the jth signal sample eigenvector êj (assumed to be asso-
ciated with a sample eigenvalue with multiplicity one) and a deter-
ministic column vector s. One can try to analyze the behavior of the
sample eigenvector êj by studying the behavior of the scalar product
〈sHêj〉, and relate it somehow to the deterministic quantity 〈sHej〉.
It turns out that, as M, T → ∞ at the same rate under a satisfied
“eigenvalue splitting condition” (4) for all eigenvalues, we get∣∣∣∣∣

∣∣〈sHêj〉
∣∣2 − M∑

k=1

wj(k)
∣∣〈sHek〉

∣∣2
∣∣∣∣∣ → 0 (10)

almost surely, where the weights wj(k) are defined as ( [9], Theo-
rem 2)

wj(k) =

⎧⎨
⎩

1− 1
Kj

∑M
r=1
r �=j

Kr

(
λj

λr−λj
− μj

λr−μj

)
k = j

λj

λk−λj
− μj

λk−μj
k �= j

(11)

and where μj are the real-valued solutions to

1

M

M∑
j=1

Kj
λj

λj − μ
=

T

M
(12)

repeated according to the multiplicity Kj of the corresponding λj .
This result is powerful, but allows for little interpretation. In order to
simplify the analysis it is common practice to consider the particular
case of the so-called “spiked population covariance matrix model”.
This class of covariance matrix was introduced by Johnstone [10],
and it describes the asymptotic behavior of a class of covariance
matrices obtained from a limited number of plane waves in noise.
Under this simplification of the original model (which implies let-
ting M → ∞ for m fixed in the above formulas), we see that the
asymptotic subspace splitting condition in (6) becomes

T/M >

(
λM

λM − λm

)2

(13)

which can also be expressed as

λm > λM (1 +
√

γ) (14)

where γ = M/T .
Let us now investigate the behavior of the solutions to (12) un-

der the spiked population covariance model. Note first that (12) can
equivalently be written as

1

M

[
m∑

j=1

λj

λj − μ
+ (M −m)

λM

λM − μmin

]
=

1

γ
. (15)

Now, let us first consider μmin. By definition, we have μmin <
λM = . . . = λm+1 < λm ≤ . . . � λ1. Hence λj − μmin can
never go to zero for any 1 � j � m. Consequently, the first term
of (15) will go to zero as M → ∞ for a fixed m, and μmin will
converge to the solution of

λM

λM − μmin
=

1

γ
(16)

namely,
μmin → λM (1− γ) . (17)

Let us now consider the convergence of μi, i ≤ m. We observe that
λi+1 ≤ μi ≤ λi, so that, by examining the first term in (15), the
only possibility is that μi → λi, i ≤ m (otherwise, the first term
of (15) would go to zero, and we would end up with the solution
to (16), which is not in the interval of interest). Furthermore, by
expressing (15) in the following way

λj

M(λj − μi)
+

1

M

m∑
j=1
j �=i

λj

λj − μi

+
M −m

M

λM

λM − μmin
=

1

γ
(18)

or, equivalently, as

M (λj − μi) =
λj

1− γ
M

∑m
j=1
j �=i

λj

λj−μi
− γ M−m

M
λM

λM−μmin

(19)

we see that (using μi → λi, i ≤ m)

M (λi − μi)→ γλi

1− γ λM
λM−λi

, i ≤ m. (20)
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With all this, we are now able to investigate the behavior of the
weights in (11) under the spiked population model simplification.
Indeed, let us first concentrate on the case 1 ≤ j ≤ m (this corre-
sponds to the convergence of a particular signal sample eigenvector).
Expressing the weights wj(k) in the following way

wj(k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1−∑m
r=1
r �=j

(
λj

λr−λj
− μj

λr−μj

)
− (M−m)λM (λj−μj)

(λM−λj)(λM−μj)
k = j

λj

λk−λj
− μj

λk−μj
k �= j

(21)

and using the above limits on the μj , 1 ≤ j ≤ m, we obtain

wj(k)→

⎧⎪⎨
⎪⎩

1−γ

(
λM

λM−λj

)2

1−γ
λM

λM−λj

k = j

0 k �= j

(22)

Hence, one can ensure that, under the spiked population covariance
matrix, and assuming λm > λM

(
1 +

√
γ
)
, one has

∣∣〈sHêj〉
∣∣2 → 1− γ

(
λM

λM−λj

)2

1− γ λM
λM−λj

∣∣〈sHej〉
∣∣2 . (23)

where s is a deterministic column vector. This is precisely the result
introduced by Paul [11] for the specific class of spiked population
covariance matrices, where again a fixed limited number of eigen-
values is greater than the smallest one, whose multiplicity grows
with the number of antennas. If we replace s with an eigenvector
of the true covariance matrix ek, we observe that (under the spiked
population covariance matrix model, and assuming asymptotic sub-
space separation) the projection of a sample eigenvector onto the
linear space spanned by an eigenvector associated with a different
eigenvalue converges to zero, i.e.

|〈eH

kêj〉|2 →
1− γ

(
λM

λM−λj

)2

1− γ λM
λM−λj

δj−k. (24)

Additionally, Paul also studied the convergence of the sample
eigenvector êj when there is no asymptotic separation between sig-
nal and noise subspaces, namely λm < λM (1 +

√
γ). In particular,

he established that, under the spiked population covariance matrix
model, ∣∣〈eH

j êj〉
∣∣2 → 0 (25)

almost surely as M, T → ∞ at the same rate (in fact, Paul proved
this for real-valued Gaussian observations with a diagonal covari-
ance matrix, but we conjecture that the result is also valid for the
observation model considered here).

Paul refers to the change in convergence above and below the
condition (14) as a “phase transition phenomenon”, which is clearly
analogous to the subspace swap phenomena known in the signal pro-
cessing literature for twenty years [12]. Here we have shown that
the condition (6), or the simplified one for the spiked population
matrix (14), which asymptotically prevents the phase transition phe-
nomenon from occurring, is in fact the condition which guarantees
the separability of the signal and noise subspaces in the asymptotic
sample eigenvalue distribution. But rather than focus narrowly on
the conditions under which the norm of the scalar product between

the true and estimated eigenvectors in the signal subspace fall below
0.5, we wish to examine subspace swap, which implies

eH

4ÊN ÊH

Ne4 > eH

4ÊSÊH

Se4. (26)

(or equivalently eH
4ÊSÊH

Se4 < 0.5), i.e. the last signal eigenvector
is better represented by the noise subspace than the signal subspace.

In order to predict the value of eH
j ÊSÊH

Sej , let us consider the fol-
lowing Theorem 2 of Mestre [9].

Theorem 2 If the splitting condition (6) for the smallest signal sub-
space eigenvalue λm is satisfied, the random value

η̂ = sH
M∑

j=m+1

êj ê
H
j s (27)

where s is a deterministic column vector, asymptotically (M, T →
∞, M/T → γ) tends to the non-random value ηG, ie.

|η̂ − ηG| −→a.s. 0 as M, T →∞, M/T → const. (28)

where

ηG = sH
M∑

j=m+1

w(j)eje
H
j s (29)

and ej , j = 1, . . . , M are the eigenvectors of the matrix RM ar-
ranged in descending order and

w(j) =

{
1− 1

M−m

∑M
k=1

(
1

λk−1
+ μmin

λk−μmin

)
, j > m

1
λj−1

− μmin
λj−μmin

, j � m

(30)
where μmin is the minimal (potentially negative) real-valued solu-
tion to

1

M

M∑
j=1

λj

λj − μ
=

T

M
(31)

assuming that λM = 1.

This theorem allows us to find the asymptotic MUSIC pseu-
dospectrum if s = S(θ) is an antenna steering vector. If instead
s = ej (the j-th eigenvector of the actual covariance matrix RM ),
from (10), we get

eH

j ÊSÊH

Sej = 1− eH

j ÊN ÊH

Nej ⇒ 1− w(j) (32)

where w(j) is specified by (30). Therefore, we get (for j ≤ m)

eH

j ÊSÊH

Sej −→a.s. λj

λj − μmin
− 1

λj − 1
. (33)

For the “spiked population covariance matrix”, when μmin →
(1 + γ) (17) (and λM = 1), we finally get

λj

λj − (1 + γ)
− 1

λj − 1
=

1− γ 1
(λj−1)2

1 + γ 1
(λj−1)

(34)

and for our specific scenario with the minimal signal subspace eigen-
value associated with e4:

eH

4ÊSÊH

Se4 −→a.s.

(
1− γ

(λ4 − 1)2

)
/

(
1 +

γ

(λ4 − 1)

)
. (35)
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We now get the same asymptotic expression as in (24), but for
the projection onto the entire sample subspace. This means that
when “intra-subspace swap” is precluded by having the eigenvalue
splitting condition (4) satisfied for all signal subspace eigenvectors,
the power (24) of the true eigenvector e4 asymptotically resides
in the fourth sample subspace eigenvector ê4, while the remaining
power resides in the sample noise subspace. If instead only the sub-
space splitting condition (6) is satisfied, then the same power (35) is
distributed across multiple sample signal subspace eigenvectors.

As can be observed in Fig. 2, the discrepancy between the es-

timated mean values for eH
4ÊSÊH

Se4 and the prediction (35) at an
source SNR experiencing significant MUSIC breakdown is within
0.2% point for a set of 103 Monte-Carlo trials.

Fig. 2. Projection of 4th true eigenvector onto the sample signal
subspace.

Finally, the most important observation from the MUSIC break-
down standpoint is that for both “proper” trials with no outliers and
“improper” MUSIC trials with at least one outlier, the minimal sig-
nal subspace eigenvector still resides in the sample signal subspace
with more than 95% of its power. This subspace “leakage” is ac-
curately predicted by (35) for multiple SNR values, as indicated in
Fig 2, and doesn’t reach the 50% value associated with full subspace
swap until a much lower SNR (comparable to that associated with
MLE rather than MUSIC breakdown).

Fig. 3. Comparison of predicted and observed projection of the
4th sample eigenvector onto the true signal subspace. The cor-
respondence between the observations and the predictions above
λ4 < 1 +

√
γ is accurate even at small array sizes such as the

M = 20 array.

3. SUMMARY AND CONCLUSION

In this paper we investigated the well-known DOA estimation per-
formance breakdown phenomenon, which manifests as a rapid de-
parture of estimation accuracy from the CRB due to the increasing
probability of erroneous “outlier” estimates as the SNR or number
of training samples is decreased below certain threshold values.

We analyzed this phenomenon for conventional MUSIC, the re-
cently developed G-MUSIC [7], and MLE for a multiple Gaussian
source scenario with i.i.d. sample support. Rather than traditional
T → ∞ asymptotic analysis, we used General Statistical Analysis
and specifically focused on under-sampled scenarios with the num-
ber of training samples T less than the antenna dimension M .

The most controversial observation gained was that in the pres-
ence of closely spaced sources, MUSIC performance breakdown fre-
quently takes place for SNR and sample support conditions that (ac-
cording to GSA predictions which were shown to be accurate even
for the under-sampled case) should almost surely preclude the “sub-
space swap” phenomenon. Therefore, for multiple source scenar-
ios, MUSIC “performance breakdown” is associated with loss of
resolution accompanied with a relatively insignificant inter-subspace
“leakage”, rather than full subspace swap.
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