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ABSTRACT

Maximum likelihood estimation techniques demonstrate “performance
breakdown” at low signal-to-noise ratios where observed estimation
errors rapidly depart from the Cramér-Rao bound below a threshold
SNR. Rather than rely on the classic asymptotic analysis for pre-
diction of that threshold, Random Matrix Theory (RMT) analysis is
employed. Both analytic predictions and direct Monte-Carlo simu-
lations demonstrate that the threshold value can be reliably predicted
even for small sample support far removed from classic asymptotic
assumptions.

Index Terms— Direction of arrival estimation, maximum like-
lihood estimation, nonuniformly spaced arrays.

1. INTRODUCTION

It has been known for a long time that under certain “threshold” con-
ditions, MLE may experience “performance breakdown” and gener-
ate severely erroneous estimates (“outliers”) not consistent with the
CRB predictions (see for example [1], pp. 278-286). Historically,
analytical studies of such MLE “breakdown” almost always rely on
traditional asymptotic (M = const, ' — 00) perturbation analysis.
See [2] for an extensive summary of relevant work on prediction of
this threshold effect, particularly in single source scenarios.

Recent results in Random Matrix Theory (RMT) (also known as
General Statistical Analysis or GSA) provide some powerful tools
to predict eigenvalue/eigenvector behavior which do not rely on tra-
ditional asymptotic assumptions. The application of these results to
MLE breakdown prediction in both single and multiple source sce-
narios is explored in this paper.

2. PERFORMANCE BREAKDOWN IN MULTIPLE
SOURCE SCENARIO

MLE breakdown is observed under conditions when a set of DOA
estimates that contains a severely erroneous estimate (an outlier)
generates a likelihood function (LF) value that exceeds the local
extremum in the vicinity of the true solution. For a solution that
contains an outlier to be “more likely” than the actual covariance
matrix, the training data should indeed generate a sample signal sub-
space with some of its elements better represented by the true noise
subspace. Therefore, the subspace swap phenomenon is likely to be
associated with MLE breakdown. In order to demonstrate this, let us
analyze MLE and MUSIC performance in a multiple target scenario,
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employing the scenario used in [3,4], with a M = 20-element uni-
form linear array (ULA), T' = 15 training samples, array element
spacing of d/\ = 0.5 and m = 4 independent equal power Gaus-
sian sources (stochastic source model) located at azimuth angles

Om = {—20°,—10°,35°,37°}, 1)

immersed in white noise, with varying per-element source SNRs.
The covariance matrix Rz for this mixture is

Ry = [Z 075(0;)S"(0;)| + o8I 2)
j=1

where the noise power is o3 = 1; source SNR is o /03, S(0) is the
DOA 0-dependent M -variate “steering” (antenna manifold) vector,
and the number of sources (m = 4) known a priori.

Obtaining an accurate MLE is not as straightforward. In the
Gaussian case, MLE is theoretically obtained by selecting the single
largest maxima of the multivariate likelihood function (LF) [5]:

3)

—Tr }\]/I A]VI
L[R(0)] = {‘”‘p[ﬂff i 1(%@)(%) (@)]}

where O represents the parameters power (c2,) and angle of arrival
(0,,) for the m sources. However, since the actual global extremum
of the LF cannot be guaranteed in practice, MLE performance is as-
sessed using an MLE-proxy algorithm [6]. The essence of this algo-
rithm is to first find a local extremum Ry, of the likelihood function
L[R] in the vicinity of the actual parameters © for every Monte-
Carlo trial. We then make an initial “seed” estimate of the actual
parameters using MUSIC derived DOAs and power estimation such
as in [7]. This set of DOA estimates 0,, for a given trial is treated as
representative of MLE performance if £[Ras (0] > L[Ry].

Fig. 2 shows the mean-square error (MSE), averaged over 300
trials, for DOA estimates of the two closely spaced sources (at 35°
and 37°) as source SNR is varied from —15 to +25dB. The figure
demonstrates the familiar “threshold effect” in MSE for the DOA
estimation process, with the sudden degradation in DOA accuracy
(due to outliers) as the SNR is decreased. The MLE breakdown is
demonstrated with the MLE-proxy algorithm discussed above, using
“seeding” solutions produced by MUSIC. Also shown is the stochas-
tic Cramér-Rao bound (CRB) for the two sources at 35° and 37° (av-
eraged together). One can observe the large gap in threshold SNRs
for MUSIC and MLE for this closely spaced source scenario.

3. SUBSPACE SWAP PREDICTIONS BY GSA/RMT

Tufts, et. al. in [8] associated the threshold effect with the probabil-
ity of subspace swap when some of the noise subspace eigenvectors
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Fig. 1. Multiple-source estimation on a 20-element uniform linear
array with 7" = 15 training samples for MUSIC and MLE.

of the sample covariance matrix better represent the signal subspace
of the true covariance matrix Ry, than some sample signal subspace
eigenvectors [9,10]. Naturally, this probability depends on how well
the signal and noise subspaces are separated in the true covariance
matrix, indicated by how large the smallest signal subspace eigen-
value \,, is compared to the white noise power 08 in Ro.

For a finite M /T ratio, the fact that the eigensubspaces of the
sample covariance matrix R may not be the best option to estimate
signal and noise subspaces has been recently explored by Mestre
in [3]. Based on the General Statistical Analysis (GSA) methodol-
ogy [11], Mestre derived a G-estimate of the signal subspace and
therefore, a G-MUSIC pseudo-spectrum estimate. Importantly, the
m-variate signal subspace estimate is found by a weighted sum of all
M eigenvectors of the sample matrix R, and “neighboring” eigen-
vectors in the sample signal and noise subspaces are weighted ac-
cordingly. The weighting coefficients are derived in [12] based on
doubly asymptotic assumptions:

T,M — oo, M/T =~ = const %)
and allowed for significant improvement in threshold values, as demon-
strated in [3].

Note that the GSA methodology provides an important insight
into subspace swap mechanisms, at least for these doubly asymptotic
(4) conditions. Indeed, Paul in [13], Theorem 4, states that for a real-
valued covariance matrix R of the form

Ro:diag()\1,)\27...,/\m,l,...71); (5)

where
M= X>...2An>1 (6)

sothate,, (0 ... 010 ... 0)7 (with unity in the m-th position) is
the m-th eigenvector of Ry, then

a) if A, > 1+ /7 and of multiplicity one (as in (5)),

(el &m)| &3 \/(1 - ﬁ)/(” ﬁ)

Q)

b) if Ay < 1+
[(eh.ém)| %% 0as M, T — oo, v = const.

®)

In fact, this theorem reinforces the observation made by John-
stone and Lu [14] who showed that when M /T — ~ € (0,00),

the sample principle components (eigenvectors) are inconsistent es-
timates of the true eigensubspace. Furthermore, Paul points out [13]
a “phase transition phenomenon”, which is clearly analogous to the
subspace swap phenomena [15]. A broader definition of the “signal
processing” subspace swap phenomena implies

eZENEHNe4 > eZEsEg&; )
or equivalently

elEgEle, < 0.5 (10)

i.e. the last signal eigenvector is better represented by the noise sub-
space than the signal subspace. Therefore, the behavior of the pro-
jection e Es Ege; is of relevance to subspace swap (and therefore
MLE breakdown) prediction. In order to predict these projection
values rather than just the eigenvector correlation predicted by Paul
in (7), we have derived in [?] (utilizing Theorem 2 of Mestre [16])
the following expression for this projection:
1—~y—>
as. Aj 1 RACYRL:
_ — — I
Aj—(1+v) A -1 l+ve=—
[CYESY)

H7ih 7H
e; EsEge;

(1)

For our specific scenario with the minimal signal subspace eigen-
value associated with e4:

H 7 foH a.s. i i
e4EsESe4 — (1 — m)/(l + m> (]2)

One can see that we get the same asymptotic expression as in
(7), but now for the projection onto the entire sample subspace.
This means that when every eigenvalue has a distinct cluster (no
“Intra-subspace swap”) then the power (7) of the true eigenvector e4
asymptotically resides in the fourth sample subspace eigenvector €4,
while the remaining power resides in the sample noise subspace. If
instead only the smallest signal subspace eigenvalue is distinct from
the noise subspace (no “inter-subspace swap”), then the same power
(12) is distributed across multiple sample signal subspace eigenvec-
tors.

4. SIMULATION RESULTS

To examine the relationship of MLE threshold effects to this sub-
space swap predictions, let us examine scenario (1) at three SNR
values: 2dB with Ay = 4.97; 0dB with A4 = 3.51; and —4dB with
Aq = 2.00.

For SNR = 2dB and A4 = 4.97, according to (12) for this SNR,
we get:

el EsEles £250.69. (13)

Monte-Carlo simulations show a mean for eZESE§e4 of 0.6815,
agreeing well with the prediction and indicating that the 4th eigen-
vector projects more onto its proper signal subspace than the noise
subspace.
For SNR = 0dB and A4 = 3.51, the projection of signal eigen-
vector onto the signal subspace is forecast via (12) as:
el EgEle, £250.51. (14)
Monte-Carlo simulations show a mean for €/} EsE%es of 0.5098.
This indicates that the subspace swap condition given in (10) is es-
sentially satisfied and subspace swap is statistically likely, consistent
with the observation in Fig. 2 that MLE breakdown starts to occur at
0dB input SNR.
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For SNR = —4dB, A4 = 2.0, and the condition for G-asymptotic
convergence (Ay > 1+ /7 = 2.15) given in (8) is violated, so
the projection should converge to zero asymptotically and (12) is no
longer valid. Monte-Carlo simulations show a mean for el Es Eg ey
of 0.2502. Clearly the scenario is experiencing significant subspace
swap, once again consistent with results given in Fig. 2.

Having established that MLE performance breakdown in the ex-
amined multiple source scenario (1) is indeed reliably associated
with subspace swap, we next examine a single source scenario, such
as studied in [17, 18], where we expect that subspace swap will in-
deed be the sole mechanism responsible for both MLE and MUSIC
DOA estimation performance breakdown.

To this end, we introduce a second scenario with a single target,
based, as in Athley [17, 18], on a sparse minimum redundancy array
(MRA) [19], where the generation of outliers is more likely due to
poor sidelobe performance. We use the following specific M = 18
configuration (d = [0, 2, 10, 22, 53, 56, 82, 83, 89, 98, 130, 148, 153,
167, 188, 192, 205, 216]) [20].

The threshold effect of MLE estimation in this scenario (pro-
vided by the Barlett spectrum or conventional beamforming (CBF))
can be observed in Fig. 2 to occur around —5dB for 7" = 14.

18-element MRA, T=14, 1 Sic at 0"

——CBF
-=--MUSIC
1E L - ~"CRB

Mean Squared Error (degz)
3 3

-
[=)
ta

-15 10 5 0
er Element SNR {dB)

Fig. 2. MSE for MUSIC and MLE (CBF) DOA estimation on a
18-element minimum redundancy array with 1000 trials/SNR step.
Note that MUSIC delivers essentially the same performance as MLE
in this circumstance, as expected for single sources.

In (9) we defined subspace swap as occurring when the projec-
tion of last true eigenvector into the underlying sample noise sub-
space was higher than into the sample signal subspace. To examine
whether this subspace swap is the sole mechanism for MLE break-
down, we can plot for each of 1000 Monte-Carlo trials and a training
sample size of 7' = 14, the DOA error of a single source estimated
with the MRA versus the correlation between the “maximal” sam-
ple and true eigenvector. These plots are shown in Fig. 3 for source
SNRs ranging from very low values which result in complete MLE
breakdown (input SNR of —18dB, as shown in Fig. 3(a)) to values
where there is no MLE breakdown (input SNR of 0dB, as shown in
Fig. 3(d)).

Fig. 3 clearly demonstrates that when the projection of the sig-
nal true eigenvector onto the sample signal subspace is high, there
is no MLE breakdown (i.e. the upper right quadrant of Figs. 3(a) to
(d) are all free of any Monte Carlo trials). Interestingly, however, the
converse is not true. When the projection of the signal true eigenvec-
tor onto the sample signal subspace is low, a DOA outlier estimate
may or may not be produced. Thus subspace swap is a necessary but
not sufficient condition for MLE breakdown to occur.

Turning our attention back to the uniform line array scenario
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with closely spaced sources given in (1) with M = 20 and T' = 15,
we now conduct a similar examination, using DOA estimates pro-
vided by the MLE-proxy algorithm. Because there are multiple
sources, but usually only one outlier, we plot the worst observed er-
ror versus the projection of the 4th true eigenvector onto the sample
signal subspace in Fig. 4. The behavior is remarkably similar to the
single source performance shown earlier, and therefore the observa-
tion that subspace swap is a necessary but not sufficient condition
for MLE breakdown is strongly reinforced.

5. SUMMARY AND CONCLUSION

In this paper we investigated the well-known performance break-
down phenomenon in DOA estimation techniques, which manifests
as a dramatic and rapid departure of estimation accuracy from the
CRB due to the increasing probability of erroneous “outlier” esti-
mates as the SNR or number of training samples is decreased below
certain threshold values.

We analyzed this phenomenon for MLE in multiple and single
Gaussian source scenarios with limited i.i.d. sample support. Rather
than consider a traditional 7" — oo asymptotic analysis, we specifi-
cally considered parameters far removed from the traditional asymp-
totic regime, focusing on under-sampled scenarios with the number
of training samples 7" less than the antenna dimension M. To pro-
vide theoretical analysis of this small-sample regime, we employed
the so-called General Statistical Analysis (GSA) methodology that
considers the asymptotic regime

M, T — oo, M/T — const. (15)

which differs significantly from the usual M = constant, 7' — oo
asymptotic assumptions. This analysis, supported by the results of
direct Monte-Carlo simulations, lead to a number of important ob-
servations.

First of all, our analysis demonstrated that the GSA methodol-
ogy very accurately predicts the subspace swap conditions, even for
antenna dimensions and sample volume which are far from the G-
asymptotic regime.

MLE performance breakdown takes place when a set of esti-
mates that contain an outlier is “more likely” than the true param-
eters or even the local LF maximum in their vicinity. For this to
happen, the input data should be insufficient, and therefore with no
surprise we established that MLE breakdown is indeed reliably as-
sociated with the subspace swap phenomena, well predicted by the
GSA methodology.

For scenarios where the MUSIC pseudo-spectrum does not dif-
fer significantly from the conventional Barlett spectrum (single or
well-separated sources, very low SNR, 7" — oo), MUSIC and MLE
techniques will demonstrate similar threshold performance, with full
subspace swap becoming the common reason for breakdown in both
techniques. For single source cases, the similar breakdown point for
MLE and MUSIC is well correlated with GSA-derived eigenvalue
splitting and subspace swap predictions. It was noted, however, that
while high projection values of the minimal signal eigenvector onto
the sample signal subspace precludes the formation of outliers lead-
ing to performance breakdown, low projection values (indicating in
some cases almost complete subspace swap) did not always lead to
performance breakdown. Therefore subspace swap is a necessary,
but not sufficient, condition for DOA estimation breakdown, with
other factors also influencing outlier production. Practically speak-
ing, however, robust prediction by GSA of the sample volume and/or
SNR which allows subspace swap to be avoided altogether is the
proper strategy to retain high MLE performance.
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signal subspace is a necessary but not sufficient condition for breakdown to occur.
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