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ABSTRACT 

 
In this paper, a novel algorithm on beam pattern synthesis 
for linear aperiodic arrays with arbitrary geometrical 
configuration is proposed. The algorithm is based on an 
Improved Genetic Algorithm (IGA) that simultaneously 
adjusts the weight coefficients and inter-sensor spacings of 
a linear aperiodic array. A novel section-based crossover 
and a self-supervised mutation process are developed to 
improve the convergence performance. The results from 
simulation illustrate that with the IGA, the Peak Sidelobe 
Level (PSL) of the synthesized beam pattern has been 
successfully lowered. In addition, the computational cost of 
the proposed algorithm can be as low as being about 10% of 
that of a recently reported genetic algorithm based synthesis 
method. The robustness of the proposed IGA has been 
illustrated clearly from the statistic of multiple independent 
runs too. The excellent performance of the IGA makes it a 
promising optimization algorithm where expensive cost 
functions are involved. 
 

Index Terms—linear arrays, aperiodic arrays, genetic 
algorithms (GAs), peak sidelobe level (PSL), beam pattern 
synthesis 
 

1. INTRODUCTION 
 
Unequally-spaced arrays [1], also termed as aperiodic arrays 
have been studied for several decades. Compared with 
equally-spaced array, aperiodic arrays have the advantages 
that they are capable of achieving higher spatial resolution 
and lower sidelobe with a smaller number of sensors. Over 
the past several decades, many analytical and numerical 
based array beam pattern synthesis techniques have been 
developed [2]-[8]. An example of the analytical techniques 
is reported in [6], in which the inter-sensor spacings for a 
given array weight distribution are determined by 
performing a Legendre transformation on the array factor. 
Examples of numerical techniques include the use of linear 
or non-linear optimization methods such as the simplex 
algorithm [2], simulated annealing algorithm [3], 
differential evolution algorithm [4], and genetic algorithm 
[5], [7]-[8]. 

The challenge of determining optimum parameter values 
simultaneously stems from the non-linear and non-convex 
dependency of the array factor to the weights and the sensor 
positions [4]. The performance of the employed 
optimization scheme is an important factor in the success of 
a pattern synthesis method, in terms of solution quality, 
computational load, and robustness. The intrinsic ability to 
cope with nonlinear problem makes Genetic Algorithms 
(GAs) a suitable solution [7]. It has been employed in the 
pattern synthesis of aperiodic arrays for many years [5], [7]-
[8]. However, as stochastic search techniques, the major 
disadvantages of the GAs are premature convergence and 
slow convergence speed, especially when they are employed 
to solve complicated problems with a large solution space 
and numerical local optima [9].  

To address the problem, an Improved Genetic algorithm 
(IGA) is proposed in this paper. In the IGA, a multi-section 
based chromosome arrangement is proposed, which allows 
the optimization to handle a wide variety of constraints and 
evolution trends. Associated with the multi-section 
encoding scheme, a novel multi-section based crossover 
process is proposed for the proceeding of real variables. In 
order to improve the convergence performance of stochastic 
optimization process, a novel self-supervised mutation 
method is presented. These improvements make the 
proposed IGA more robust, statistically sound and faster in 
convergence.  

The remaining part of this paper is organized as follows. 
The array synthesis formulation for aperiodic arrays and the 
GA based synthesis method are briefly described in Section 
2 and 3. The proposed IGA for the synthesis of aperiodic 
arrays is presented and discussed in Section 4. Section 5 
describes the simulation study and shows the comparative 
performance of the proposed technique. Concluding 
remarks are given in Section 6. 
 

2. APERIODIC ARRAY SYNTHESIS 
FORMULATION 

 
Assume an aperiodic and asymmetrical linear array with N 
sensors as shown in Fig. 1. The array factor AF ( ) can be 
characterized as [1] 
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and k=2 / ,  is the wavelength,  is the steering angle 
measured with respect to the x axis, xn is the distance 
between the first and the nth sensors measured in wavelength 
, di is the inter-sensor spacing between the (i-1)th and the ith 

sensors, and wn is the weight coefficient of the nth sensor. 
Since wn is complex, it can be expressed as 

exp( ) ,n n nw a j where an and n are the amplitude and 
phase of wn respectively. Consequently, the array factor can 
be expressed as 
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Fig. 1 Geometry of an aperiodic and asymmetric linear array 

with N sensors. 
 

3. ARRAY SYNTHESIS USING GENETIC 
ALGORITHM 

 
The task of array synthesis is to design the parameters of the 
array so that it will produce a pattern close to the desired 
beam pattern. When applying the GA for array pattern 
synthesis, the sensor parameters are encoded and cascaded 
to form a chromosome which represents a potential solution. 
A specified number of chromosomes can be used to 
construct a population, which will then evolve through 
selection, breeding and genetic variation. With the help of 
such an evolutionary process, the parameters of the array 
can be synthesized.  

In the GA, the fitness function (or objective function), 
fit, serves to evaluate the performance of each chromosome. 
A chromosome having a larger fitness value implies a fitter 
individual and hence a better solution. As the objective of 
optimization is to minimize the sidelobe level of the array 
pattern by adjusting the parameters of the array, subject to 
given design specifications and constraints, the fitness 
function can be defined with the evaluation of the Peak 
Sidelobe Level (PSL) as 

      
10 Sidelobe

( )20 log m ax ,
m ax( ( ))s

sAF
fit

AF
           (3) 

where s is the spanned angles within the sidelobe band. In 
EQ. (3), the PSL is measured in the unit of decibel. Here, 
we introduce the minus “-” in order to make it a 
maximization problem.  
  
4. PROPOSED IMPROVED GENETIC ALGORITHM  
 
Over the past decades, the Genetic algorithm (GA) has been 
widely applied to array synthesis [5], [7]-[8], [10]-[14]. 

Although the GA is capable of solving non-linear and non-
convex problems, it is computationally intensive and its 
convergence is not guaranteed, especially when the solution 
space is larger [9]. In order to enhance the convergence 
performance of the GA, an Improved Genetic Algorithm 
(IGA) is proposed in this paper. 

In the IGA, a multi-section based real encoding scheme 
for the gene arrangement in a chromosome is proposed, 
which allows the optimization to handle a wide variety of 
constraints and evolution trends. The chromosomes are 
represented using floating-point numbers, which represent 
the parameter vectors of the array. Here, we arrange the 
sensor weights and locations in different variable-sections, 
e.g. weight-section and spacing-section (or amplitude-
section, phase-section and spacing section if the weights are 
complex numbers). A chromosome is formed by cascading 
all the sections. Arranging the chromosome in this multi-
section way has the advantage that, it takes care of the 
possibility of different types of parameters that may have 
different constraints and evolutionary trends.  

Associated with our encoding scheme, a section based 
crossover process is proposed for real variables. This allows 
the independent control of evolution process for each type 
of array parameters. Three methods of crossover, i.e. 
uniform crossover, single-point crossover and multi-point 
crossover, are randomly applied in each generation during 
the evolutionary process. In the uniform crossover, the 
crossover is performed over the entire chromosome via a 
randomly generated mask. In the single-point crossover, one 
cut-point is randomly chosen from the parents and the parts 
located in the right of the cut-point are exchanged. 
Similarly, for the two-point crossover, two cut-points are 
selected and the parts between the two points are 
exchanged.  

Here, we compute the new cut-point genes, gc1 and gc2, 
by taking a linear combination of the old cut-point genes, 
gp1 and gp2, the upper and lower bounds, glow and gup, of the 
gene, and a randomly generated value, c,         
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where gc1 and gc2 are the new cut-point genes in the two 
children, gp1 and gp2 are the old cut-point genes in the two 
parents, glow and gup are the lower and upper bounds of the 
gene, respectively, and c is a randomly generated number 
between [0,1].  

After the offspring are produced from the crossover 
process, they will then undergo a mutation process. It is 
well known that as stochastic search techniques the GA 
does not always evolve towards a good solution; it only 
evolves away from bad circumstances. Therefore, the GA 
risks finding a suboptimal solution and has low convergence 
speed in complex applications. To address the problem, a 
novel self-supervised (in place of the usual stochastic) 
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mutation is proposed in the IGA. The results from the 
previous searches are used to adjust the direction and step 
size of the subsequent search in the mutation process, so 
that it is capable of finding better solutions in “good” 
searching areas, and preventing the evolution from 
repeatedly exploiting “bad” areas. By this way, the IGA can 
be more efficient with less computational load over the GA.  

Let us define each update of a gene during mutation as 
a Search. In the self-supervised scheme, the results obtained 
from the previous Searches are used to adjust the direction 
and the step size of the subsequent Search. At the beginning 
of the mutation process, a Search is performed on the gene 
in an arbitrary direction. If a better solution can be obtained 
in that direction, the mutation will continue with a new 
Search. The Searching step sizes are gradually decreased 
within a local area of the gene value. The Search in the 
same direction will stop when there is no significant 
solution improvement. This approach finds the best or near-
best solution in one direction, and as such, the IGA can be 
more robust, statistically sound and faster in convergence.  

Let the gene to be mutated be denoted as gi, the new 
gene gi’ after one Search is calculated as 

     ( ), 0
' ,  if 0< 1,

( ), 0
'                              if -1 0,

i i upi i i
i

i i lowi i i

i i i i

g M g g g
g M

g M g g g

g g M g M

           (5) 

where glowi and gupi are the lower and upper bounds of gi. Mi 
is a real number within the range of [-1, 1], which is 
randomly initialized at the beginning of the mutation. After 
each Search, Mi is decreased by multiplying a factor rdec to 
it.  

     ' ,  if  AND ,i dec i new old old aveM r M fit fit e fit fit        (6) 
where Mi’ is the new value of Mi, rdec is the decreasing rate 
satisfying 0<rdec<1, fitold and fitnew are the original and the 
new fitness values, respectively, fitave is the average fitness 
value of the offspring from the crossover, and e is the 
minimum acceptable improvement. After updating Mi and 
gi, a new Search will start with Mi’ and gi’.  The mutation 
Search on gi is considered to be fully completed when the 
condition in (6) cannot be met.  

Through the process of crossover and mutation, new 
chromosomes are produced. Such process is iterated till the 
algorithm converges or the termination conditions are met. 
 

5. NUMERICAL EXAMPLE AND RESULTS 
ANALYSIS 

 
In order to compare the performance of the IGA with that of 
the Modified Genetic Algorithm (MGA) proposed in [7], let 
us consider the synthesis of two pencil-beam patterns. The 
main beams are confined to be within 0  u  2/N, where 
u = cos( ), and N = 17 and 37, respectively. In [7], the two 
patterns were synthesized with the MGA method for a 
symmetrical aperture and using a fixed set of weights. 
Lower Peak Sidelobe Levels (PSL) were achieved 

compared to those obtained from the analytical technique 
proposed in [6]. Our proposed IGA will be compared with 
the MGA[7] in terms of PSL, convergence speed and 
algorithm robustness.   

In the IGA, the population size is set to 30. According 
to our experience, the parameters in the crossover and the 
mutation process are selected as pc (crossover probability) = 
0.8, pm (mutation probability) = 0.2, rde = 0.6, and e = 0.001. 
The computational complexity is measured in terms of the 
number of fitness function evaluated. In order to find the 
average performance of the IGA and gain an insight of its 
robustness, the IGA is executed for 10 runs for each set of 
parameter values considered. The number of generations is 
50 for each run.  

The resultant lowest PSL of each run is shown in Fig. 
2. The best-case (i.e. lowest) lowest PSL for the IGA is -
20.32 dB. In Fig. 2, the dashed line shows the best-case 
lowest PSL reported in [7] using the MGA. For the MGA, 
the population size is 200 and the number of generations is 
300 [7]. It can be seen from Fig. 2 that the best–case lowest 
PSL for the MGA is 0.5 dB higher than that of our proposed 
IGA. Fig. 2 also shows that the lowest PSLs obtained by the 
IGA in 9 out of 10 runs are better than the best-case value 
obtained by the MGA. Simulation runs also show that the 
worst-case and average lowest PSL for the MGA are also 
poorer than that of our proposed IGA. The resultant sensor 
positions obtained by the IGA are shown in Fig. 3 (a). The 
resultant beam patterns obtained by the IGA and the MGA 
are shown in Fig. 3 (b).The above are reported for a 37-
sensor array (i.e. N=37) and the corresponding results are 
shown in Figs. 4 and 5. As the Figures show, the 
improvements made by the IGA are even clearer fro this 
(larger) value of N.   

It should be noted from the comparative results shown in 
Figs. 2-5 that the IGA not only achieves a better PSL 
performance, but also requires a smaller population size (30 
individuals) and involves a shorter process time (50 
generations). Furthermore, the average numbers of the 
fitness function evaluated required by the IGA are only 
about 10% (N=17) or 17% (N=37), of that required by the 
MGA. This is a significant saving in the computational 
effort as compared to that needed by the MGA.  
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Fig. 2 Resultant lowest PSLs obtained by the proposed IGA 

in 10 runs (N=17). The dashed line shows the best-case 
lowest PSL for the MGA. 
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Fig. 3 (a) Sensor positions obtained using the proposed 

IGA. (b) Resultant beam patterns of IGA and MGA. 
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Fig. 4 Resultant lowest PSLs obtained by the proposed IGA 

in 10 runs (N=37). The dashed line shows the best-case 
lowest PSL for the MGA. 
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Fig. 5 (a) Sensor positions obtained using the proposed 

IGA. (b) Resultant beam patterns of IGA and MGA. 

 
6. CONCLUSION 

 
In this paper, a novel beam pattern synthesis algorithm has 
been proposed for linear aperiodic arrays with arbitrary 
geometrical configuration. To address the high-dimension 
non-linear problem involved in pattern synthesis, an 
Improved Genetic Algorithm (IGA) is proposed in this 
paper. In the IGA, a novel crossover process is proposed for 
the optimization of real variables. To overcome the 
drawbacks of stochastic process, a novel self-supervised 
mutation is applied in the IGA. Simulation results show that 
the proposed IGA is able to achieve lower PSL and higher 
convergence rate compared to a recently reported genetic 
algorithm based synthesis approach [7]. The new design 

leads to savings on computational efforts of up to 89.9% 
compared to the results reported in [7]. The excellent 
comparative performance of the proposed IGA makes it a 
promising optimization algorithm for aperiodic array 
synthesis where a high cost function is involved.  
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